## Introducing 05A06: Patterns in Permutations and Words

#### Eric S. Egge

Carleton College

September 20, 2014

æ

(日) (同) (三) (三)

There are already numerous cool results.

< 🗗 🕨 🔸

There are already numerous cool results.

We've answered some deep questions.

There are already numerous cool results.

We've answered some deep questions.

Even more open problems remain, some just as deep.

There are already numerous cool results.

2 / 34

We've answered some deep questions.

Even more open problems remain, some just as deep.

Surprising and exciting new ideas and approaches surface regularly.

There are already numerous cool results.

We've answered some deep questions.

Even more open problems remain, some just as deep.

Surprising and exciting new ideas and approaches surface regularly.

There's room for all, from undergraduates to wily veterans.

Suppose  $\pi$  and  $\sigma$  are permutations, written in one-line notation. An *occurrence* of  $\sigma$  in  $\pi$  is a subsequence of  $\pi$  whose entries are in the same relative order as the entries of  $\sigma$ .

Suppose  $\pi$  and  $\sigma$  are permutations, written in one-line notation. An *occurrence* of  $\sigma$  in  $\pi$  is a subsequence of  $\pi$  whose entries are in the same relative order as the entries of  $\sigma$ .

Example

3561274 contains 9 occurrences of 21. (inversions)

3 / 34

Suppose  $\pi$  and  $\sigma$  are permutations, written in one-line notation. An *occurrence* of  $\sigma$  in  $\pi$  is a subsequence of  $\pi$  whose entries are in the same relative order as the entries of  $\sigma$ .

Example

3561274 contains 12 occurrences of 12. (coinversions)

Suppose  $\pi$  and  $\sigma$  are permutations, written in one-line notation. An *occurrence* of  $\sigma$  in  $\pi$  is a subsequence of  $\pi$  whose entries are in the same relative order as the entries of  $\sigma$ .

#### Example

3561274 contains 7 occurrences of 312.

Suppose  $\pi$  and  $\sigma$  are permutations, written in one-line notation. An *occurrence* of  $\sigma$  in  $\pi$  is a subsequence of  $\pi$  whose entries are in the same relative order as the entries of  $\sigma$ .

#### Example

#### 3561274 contains 7 occurrences of 312.

**3**561274 **3**561274 **3**561274 **3**561274 **3**561274 **3**561274 **3**561274

Suppose  $\pi$  and  $\sigma$  are permutations, written in one-line notation. An *occurrence* of  $\sigma$  in  $\pi$  is a subsequence of  $\pi$  whose entries are in the same relative order as the entries of  $\sigma$ .



Suppose  $\pi$  and  $\sigma$  are permutations, written in one-line notation. An *occurrence* of  $\sigma$  in  $\pi$  is a subsequence of  $\pi$  whose entries are in the same relative order as the entries of  $\sigma$ .



Suppose  $\pi$  and  $\sigma$  are permutations, written in one-line notation. An *occurrence* of  $\sigma$  in  $\pi$  is a subsequence of  $\pi$  whose entries are in the same relative order as the entries of  $\sigma$ .



4 / 34

## The Definition in Pictures



#### Observation

Every symmetry f of the square is a bijection between occurrences of  $\sigma$  in  $\pi$  and occurrences of  $\sigma^f$  in  $\pi^f$ .

## $\sigma[\pi] := \mathsf{number of occurrences of } \sigma \text{ in } \pi$

< 4 → <

## $\sigma[\pi] := \mathsf{number of occurrences of } \sigma \text{ in } \pi$

## Theorem (Rodrigues, 1839)

$$\sum_{\pi\in\mathcal{S}_n}q^{21[\pi]}=1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

3

5 / 34

 $\sigma[\pi] := \mathsf{number of occurrences of } \sigma \text{ in } \pi$ 

### Theorem (Rodrigues, 1839)

$$\sum_{\pi\in \mathcal{S}_n} q^{21[\pi]} = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

Problem  
For each 
$$\sigma$$
, find  $\sum_{\pi \in S_n} q^{\sigma[\pi]}$ .

Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words Septer

 $\sigma[\pi] := \mathsf{number of occurrences of } \sigma \text{ in } \pi$ 

### Theorem (Rodrigues, 1839)

$$\sum_{\pi\in \mathcal{S}_n} q^{21[\pi]} = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

Ambition  
For each 
$$\sigma$$
, find  $\sum_{\pi \in S_n} q^{\sigma[\pi]}$ .

Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words

 $\sigma[\pi] := \mathsf{number of occurrences of } \sigma \text{ in } \pi$ 

### Theorem (Rodrigues, 1839)

$$\sum_{\pi\in \mathcal{S}_n} q^{21[\pi]} = 1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

Dream  
For each 
$$\sigma$$
, find  $\sum_{\pi \in S_n} q^{\sigma[\pi]}$ .

Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words Septe

 $\sigma[\pi] := \mathsf{number} \text{ of occurrences of } \sigma \text{ in } \pi$ 

#### Theorem (Rodrigues, 1839)

$$\sum_{\pi\in\mathcal{S}_n}q^{21[\pi]}=1(1+q)(1+q+q^2)\cdots(1+q+\cdots+q^{n-1})$$

# Opium-Induced Fever Dream For each $\sigma$ , find $\sum_{\pi \in S_n} q^{\sigma[\pi]}$ .

Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words

#### Definition

We say  $\pi$  *avoids*  $\sigma$  whenever  $\sigma[\pi] = 0$ .

Definition We say  $\pi$  *avoids*  $\sigma$  whenever  $\sigma[\pi] = 0$ .

 $Av_n(\sigma) = S_n(\sigma) :=$  set of permutations in  $S_n$  which avoid  $\sigma$ 



 $Av_n(\sigma) = S_n(\sigma) :=$  set of permutations in  $S_n$  which avoid  $\sigma$ 

## Question For each *n* and each $\sigma$ , what is $|Av_n(\sigma)|$ ?

Definition

We say  $\pi$  *avoids*  $\sigma$  whenever  $\sigma[\pi] = 0$ .

 $Av_n(R) = S_n(R) :=$  set of permutations in  $S_n$  which avoid all  $\sigma \in R$ 

Question For each *n* and each *R*, what is  $|Av_n(R)|$ ?

#### Definition

We say patterns  $\sigma_1$  and  $\sigma_2$  are *Wilf-equivalent* whenever

$$|Av_n(\sigma_1)| = |Av_n(\sigma_2)|$$

for all n.

7 / 34

#### Definition

We say patterns  $\sigma_1$  and  $\sigma_2$  are *Wilf-equivalent* whenever

$$|Av_n(\sigma_1)| = |Av_n(\sigma_2)|$$

for all n.

#### Question

Which patterns of each length are Wilf-equivalent?

## **Enumerative Results**

Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words September 20, 2014

3

8 / 34

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## More Enumerative Results

| R             | $ Av_n(R) $             | OGF                          |
|---------------|-------------------------|------------------------------|
| 123, 132      | 2 <sup><i>n</i>-1</sup> | $\frac{1-x}{1-2x}$           |
| 123, 231      | $1 + \binom{n}{2}$      | $\frac{1-2x+2x^2}{(1-x)^3}$  |
| 123, 321      | 0 for $n \ge 5$         | $1 + x + 2x^2 + 4x^3 + 4x^4$ |
| 123, 132, 213 | $F_{n+1}$               | $\frac{1}{1-x-x^2}$          |
| 123, 132, 231 | п                       | $\frac{1}{(1-x)^2}$          |

(日) (周) (三) (三)

## Even More Enumerative Results

| R         | $ Av_n(R) $                         | OGF                                          |
|-----------|-------------------------------------|----------------------------------------------|
| 123, 3412 | $2^{n+1} - \binom{n+1}{3} - 2n - 1$ | $\frac{1-5x+10x^2-9x^3+4x^4}{(1-2x)(1-x)^4}$ |
| 132, 4231 | $1 + (n-1)2^{n-2}$                  | $\frac{1-4x+5x^2-x^3}{(1-2x)^2(1-x)}$        |
| 123, 2143 | F <sub>2n</sub>                     | $\frac{1-2x}{1-3x+x^2}$                      |
| 123, 2413 |                                     |                                              |
| 132, 2314 |                                     |                                              |
| 132, 2341 |                                     |                                              |
| 312, 2314 |                                     |                                              |
| 312, 3241 |                                     |                                              |
| 312, 3214 |                                     |                                              |
| 123, 3214 |                                     |                                              |
| 312, 4321 |                                     |                                              |
| 312, 3421 |                                     |                                              |
| 132, 3241 |                                     |                                              |
| 132, 3412 |                                     |                                              |
| 312, 1432 |                                     |                                              |
| 312, 1342 |                                     |                                              |

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

## Still More Enumerative Results

| R          | <i>Av<sub>n</sub></i> ( <i>R</i> )                                     | OGF                                |
|------------|------------------------------------------------------------------------|------------------------------------|
| 2143, 3412 | $\binom{2n}{n} - \sum_{m=0}^{n-1} 2^{n-m-1} \binom{2m}{m}$             | $\frac{1-3x}{(1-2x)\sqrt{1-4x}}$   |
| 1234, 3214 |                                                                        |                                    |
| 4123, 3214 | $\frac{4^{n-1}+2}{2}$                                                  | x(1 - 3x)                          |
| 2341, 2143 | 3                                                                      | (1-x)(1-4x)                        |
| 1234, 2143 | -                                                                      |                                    |
| 1324, 2143 |                                                                        |                                    |
| 1342, 2431 |                                                                        | $1 - 5x + 3x^2 + x^2\sqrt{1 - 4x}$ |
| 1342, 3241 |                                                                        |                                    |
| 1342, 2314 |                                                                        | $1 - 6x + 8x^2 - 4x^3$             |
| 1324, 2413 |                                                                        |                                    |
| 2413, 3142 |                                                                        |                                    |
| 1234, 2134 |                                                                        |                                    |
| 1324, 2314 |                                                                        |                                    |
| 3124, 3214 | $n \qquad (2n-d)$                                                      | $1 - x - \sqrt{1 - 6x + x^2}$      |
| 3142, 3214 | $r_{n-1} = \sum C_{n-d} \begin{pmatrix} 2n & 0 \\ 0 & 0 \end{pmatrix}$ |                                    |
| 3412, 3421 | $\int_{d=0}^{d=0} d$                                                   | 2x                                 |
| 1324, 2134 |                                                                        |                                    |
| 3124, 2314 |                                                                        |                                    |
| 2134, 3124 |                                                                        |                                    |

3

(日) (周) (三) (三)

## Some Open Enumerative Problems

| R          | $ Av_n(R) $ for $n = 5, 6, 7, 8, 9, 10$ |
|------------|-----------------------------------------|
| 1234, 3412 | 86, 333, 1235, 4339, 14443, 45770       |
| 1243, 4231 | 86, 335, 1266, 4598, 16016, 53579       |
| 1324, 3412 | 86, 335, 1271, 4680, 16766, 58656       |
| 1324, 4231 | 86, 336, 1282, 4758, 17234, 61242       |
| 1243, 3412 | 86, 337, 1295, 4854, 17760, 63594       |
| 1324, 2341 | 87, 352, 1428, 5768, 23156, 92416       |
| 1342, 4123 | 87, 352, 1434, 5861, 24019, 98677       |
| 1243, 2134 | 87, 354, 1459, 6056, 25252, 105632      |
| 1243, 2431 | 88, 363, 1507, 6241, 25721, 105485      |
| 1324, 2431 | 88, 363, 1508, 6255, 25842, 106327      |
| 1243, 2341 | 88, 365, 1540, 6568, 28269, 122752      |
| 1342, 3412 | 88, 366, 1556, 6720, 29396, 129996      |
| 1243, 2413 | 88, 367, 1568, 6810, 29943, 132958      |
| 1243, 3124 | 88, 367, 1571, 6861, 30468, 137229      |
| 1234, 2341 | 89, 376, 1611, 6901, 29375, 123996      |
| 1342, 2413 | 89, 379, 1664, 7460, 33977, 156727      |
| 1324, 1432 | 89, 380, 1677, 7566, 34676, 160808      |
| 1234, 1342 | 89, 380, 1678, 7584, 34875, 162560      |
| 1432, 2143 | 89, 381, 1696, 7781, 36572, 175277      |
| 1243, 1432 | 89, 382, 1711, 7922, 37663, 182936      |
| 2143, 2413 | 90, 395, 1823, 8741, 43193, 218704      |

05A06: Patterns in Permutations and Words Eric S. Egge (Carleton College)

- 一司

æ

## Just A Couple More Enumerative Results

| $\sigma$     | $ Av_n(\sigma) $                                                                                                  |
|--------------|-------------------------------------------------------------------------------------------------------------------|
| 1234         | 1 <sup>n</sup> 2 <sup>i</sup> m + 1, m + 2                                                                        |
| 1243         | $-\frac{1}{2}\sum_{j=1}^{n-1}\sum_{j=1}^{n-1}\binom{n+1}{n+2}$                                                    |
| 2143         | $(n+1)^2(n+2) \xrightarrow{j} (j) (j+1) (j+1)$                                                                    |
| 3214         |                                                                                                                   |
| 1342<br>2413 | $(-1)^{n-1} \frac{7n^2 - 3n - 2}{2} + 3\sum_{j=2}^n \frac{(2j-4)!}{j!(j-2)!} \binom{n-j+2}{2} (-1)^{n-j} 2^{j+1}$ |
| 1324         | Unknown beyond $n = 36$                                                                                           |

æ

∃ >

- 一司

## A Cool Picture





3

・ロト ・聞ト ・ヨト ・ヨト
## The Bet

"Not even God knows  $|Av_{1000}(1324)|$ ." Doron Zeilberger



くほと くほと くほと

3

The Bet

"Not even God knows  $|Av_{1000}(1324)|$ ." Doron Zeilberger





"I'm not sure how good Zeilberger's God is at math,

-

Einar Steingrímsson

The Bet

"Not even God knows  $|Av_{1000}(1324)|$ ." Doron Zeilberger





"I'm not sure how good Zeilberger's God is at math,

but I believe that some humans will find this number in the not so distant future."

Einar Steingrímsson

#### Theorem

For all  $\sigma \in S_3$ ,

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(\sigma)|}=4.$$

3

16 / 34

-

#### Theorem

For all  $\sigma \in S_3$ ,

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(\sigma)|}=4.$$

#### Wilf's First Question, $\sim 1980$

ls

$$|Av_n(\sigma)| \le (|\sigma|+1)^n$$

for all n?

3. 3

#### Theorem

For all  $\sigma \in S_3$ ,

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(\sigma)|}=4.$$

### Wilf's First Question, $\sim 1980$

ls

$$|Av_n(\sigma)| \le (|\sigma|+1)^n$$

for all n?



#### Theorem

For all  $\sigma \in S_3$ ,

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(\sigma)|}=4.$$

### Wilf's First Question, $\sim 1980$

ls

$$|Av_n(\sigma)| \le (|\sigma|+1)^n$$

for all n?



#### Theorem

For all  $\sigma \in S_3$ ,

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(\sigma)|}=4.$$

### Wilf's First Question, $\sim 1980$

ls

$$|Av_n(\sigma)| \leq (|\sigma|+1)^n$$

for all n?

### Theorem (Regev, 1981)

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(12\cdots k)|} = (k-1)^2$$

Eric S. Egge (Carleton College)





-

3





Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words Septer



# Stanley's Question, $\sim 1980$ Is $\lim_{n\to\infty} \sqrt[n]{|Av_n(\sigma)|} = (|\sigma| - 1)^2$ for all $\sigma$ ?

### Wilf's Next Question

Does there exist, for each  $\sigma$ , a constant  $c(\sigma)$  with

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(\sigma)|}=c(\sigma)?$$

#### The Stanley-Wilf Upper Bound Conjecture

For every  $\sigma$  there is a constant  $c(\sigma)$  such that

 $|Av_n(\sigma)| \leq c(\sigma)^n.$ 

The Stanley-Wilf Upper Bound Conjecture

For every  $\sigma$  there is a constant  $c(\sigma)$  such that

 $|Av_n(\sigma)| \leq c(\sigma)^n.$ 

#### The Stanley-Wilf Limit Conjecture

For every  $\sigma$  there is a constant  $c(\sigma)$  such that

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(\sigma)|}=c(\sigma).$$

The Stanley-Wilf Upper Bound Conjecture

For every  $\sigma$  there is a constant  $c(\sigma)$  such that

 $|Av_n(\sigma)| \leq c(\sigma)^n.$ 

The Stanley-Wilf Limit Conjecture

For every  $\sigma$  there is a constant  $c(\sigma)$  such that

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(\sigma)|}=c(\sigma).$$

Limit  $\Rightarrow$  Upper Bound: Clear

The Stanley-Wilf Upper Bound Conjecture

For every  $\sigma$  there is a constant  $c(\sigma)$  such that

 $|Av_n(\sigma)| \leq c(\sigma)^n.$ 

The Stanley-Wilf Limit Conjecture

For every  $\sigma$  there is a constant  $c(\sigma)$  such that

$$\lim_{n\to\infty}\sqrt[n]{|Av_n(\sigma)|}=c(\sigma).$$

 $\mathsf{Limit} \Rightarrow \mathsf{Upper Bound: Clear}$ 

Upper Bound  $\Rightarrow$  Limit: Arratia 1999

Generalized = Consecutive = Vincular

3

-

Generalized = Consecutive = Vincular

2<u>41</u>3

$$2 - 41 - 3$$

3

э.





3 x 3



Example 25314 contains 2413 but avoids 2413.

э

Bivincular

3

Bivincular



3

2314





Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words September 20, 2014 20 / 34

## The Füredi-Hajnal Conjecture

Convention: Matrices use only entries 0 and 1.

Convention: Matrices use only entries 0 and 1.

#### Definition

A matrix M contains a matrix C whenever M has a submatrix  $M_{sub}$  of C's dimensions such that  $M_{sub}$  has a 1 in every place C has a 1.

Convention: Matrices use only entries 0 and 1.

#### Definition

A matrix M contains a matrix C whenever M has a submatrix  $M_{sub}$  of C's dimensions such that  $M_{sub}$  has a 1 in every place C has a 1.

Example  

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix} \text{ contains } \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

#### The Füredi-Hajnal Question, 1992

Given a matrix C, how many 1s can an  $n \times n$  matrix M contain before it must contain C?

#### The Füredi-Hajnal Question, 1992

Given a matrix C, how many 1s can an  $n \times n$  matrix M contain before it must contain C?

#### The Füredi-Hajnal Conjecture

If C is a permutation matrix then there is a number c(C) such that if an  $n \times n$  matrix M has at least c(C)n entries equal to 1, then M contains C.

#### The Füredi-Hajnal Question, 1992

Given a matrix C, how many 1s can an  $n \times n$  matrix M contain before it must contain C?

#### The Füredi-Hajnal Conjecture

If C is a permutation matrix then there is a number c(C) such that if an  $n \times n$  matrix M has at least c(C)n entries equal to 1, then M contains C.

Theorem (Klazar, 2001) Füredi-Hajnal  $\Rightarrow$  Stanley-Wilf





< 行

э

∃ >





#### Fall 2003 Adam Marcus starts his Fulbright in Hungary, working with Gábor Tardos





- Fall 2003 Adam Marcus starts his Fulbright in Hungary, working with Gábor Tardos
- Late 2003 Marcus and Tardos prove the Füredi-Hajnal conjecture





- Fall 2003 Adam Marcus starts his Fulbright in Hungary, working with Gábor Tardos
- Late 2003 Marcus and Tardos prove the Füredi-Hajnal conjecture
- Weeks Later Marcus and Tardos learn about the Stanley-Wilf conjecture

# How Long Did It Take to Prove the Stanley-Wilf Conjecture?



Richard Stanley before

# How Long Did It Take to Prove the Stanley-Wilf Conjecture?



Richard Stanley before



Richard Stanley after

## Definition

For each  $\sigma$ ,

$$L(\sigma) := \lim_{n \to \infty} \sqrt[n]{|Av_n(\sigma)|}.$$

► < Ξ ►</p>

< A > < 3

æ

### Definition

For each  $\sigma$ ,

$$L(\sigma) := \lim_{n \to \infty} \sqrt[n]{|Av_n(\sigma)|}.$$

| $\sigma$      | $L(\sigma)$ |
|---------------|-------------|
| 123           | 4           |
| 132           |             |
| 1234          |             |
| 1243          | 0           |
| 2143          | 9           |
| 3214          |             |
| 1342          | 8           |
| 2413          |             |
| 1324          |             |
| $12 \cdots k$ | $(k-1)^2$   |

► < Ξ ►</p>

< A > < 3

æ
| Definition                                                   |       | $\sigma$      | $L(\sigma)$ |
|--------------------------------------------------------------|-------|---------------|-------------|
| For each $\sigma$ ,                                          | · ·   | 123           |             |
|                                                              |       | 132           | 4           |
| $L(\sigma) := \lim_{n \to \infty} \sqrt[n]{ Av_n(\sigma) }.$ |       | 1234          |             |
|                                                              | ,     | 1243          | 0           |
| Theorem (Bevan, 2014)                                        |       | 2143          | 9           |
|                                                              |       | 3214          |             |
| $L(1324) \ge 9.81$                                           |       | 1342          | 0           |
|                                                              | ,<br> | 2413          | 0           |
|                                                              | -     | 1324          |             |
|                                                              | -     | $12 \cdots k$ | $(k-1)^2$   |

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

| Definition                                                   | 1     | $\sigma$          | $L(\sigma)$   |
|--------------------------------------------------------------|-------|-------------------|---------------|
| For each $\sigma$ ,                                          |       | 123               |               |
|                                                              |       | 132               | 4             |
| $L(\sigma) := \lim_{n \to \infty} \sqrt[n]{ Av_n(\sigma) }.$ |       | 1234              |               |
|                                                              | ,<br> | 1243              | 0             |
| Theorem (Bevan, 2014)                                        |       | 2143              | 9             |
|                                                              |       | 3214              |               |
| $L(1324) \geq 9.81$                                          |       | 1342              | 8             |
|                                                              |       | 2413              | 0             |
| Theorem (Bóna, 2013)                                         |       | 1324              | [9.81,13.738] |
| $L(1324) \le 13.738$                                         |       | 12 · · · <i>k</i> | $(k - 1)^2$   |

<ロ> (日) (日) (日) (日) (日)

3

For any  $\sigma \neq 12 \cdots k$ , and any  $j \ge 0$ , the number of  $\sigma$ -avoiders with j inversions is a nondecreasing function of length.

For any  $\sigma \neq 12 \cdots k$ , and any  $j \ge 0$ , the number of  $\sigma$ -avoiders with j inversions is a nondecreasing function of length.

### 132-avoiders with exactly 2 inversions

For any  $\sigma \neq 12 \cdots k$ , and any  $j \ge 0$ , the number of  $\sigma$ -avoiders with j inversions is a nondecreasing function of length.

### 231-avoiders with exactly 2 inversions

For any  $\sigma \neq 12 \cdots k$ , and any  $j \ge 0$ , the number of  $\sigma$ -avoiders with j inversions is a nondecreasing function of length.



For any  $\sigma \neq 12 \cdots k$ , and any  $j \ge 0$ , the number of  $\sigma$ -avoiders with j inversions is a nondecreasing function of length.

Theorem (Claesson, Jelínek, Steingrímsson, 2012) If the CJS conjecture holds for  $\sigma = 1324$ , then  $L(1324) < e^{\pi\sqrt{2/3}} \approx 13.001954.$ 

### Conjecture (Conway and Guttmann, 2014)

There are constants B,  $\mu$ ,  $\mu_1$ , and g such that

$$|Av_n(1324)| \sim B\mu^n \mu_1^{\sqrt{n}} n^g.$$

Conjecture (Conway and Guttmann, 2014)

There are constants B,  $\mu$ ,  $\mu_1$ , and g such that

$$|Av_n(1324)| \sim B\mu^n \mu_1^{\sqrt{n}} n^g.$$

 $\mu = 11.60 \pm 0.01$   $\mu_1 = 0.0398 \pm 0.001$   $g = -1.1 \pm 0.2$  $B = 9.5 \pm 1.0$ 



- Fix a permutation  $\sigma$ .
- Players take turns placing stones on grid points.



- Fix a permutation  $\sigma$ .
- Players take turns placing stones on grid points.
- No two stones may be in the same row or column.



- Fix a permutation  $\sigma$ .
- Players take turns placing stones on grid points.
- No two stones may be in the same row or column.
- No occurrence of  $\sigma$  allowed.



- Fix a permutation  $\sigma$ .
- Players take turns placing stones on grid points.
- No two stones may be in the same row or column.

- No occurrence of  $\sigma$  allowed.
- Last player to move wins.

## Would You Like to Play a Game?



#### Is it better to play first or second?

# What If Your Opponent Goes First, But Is Confused?



#### Where should you play?

|                     | Board Size   | Winning Player |
|---------------------|--------------|----------------|
|                     | 1 	imes 1    |                |
|                     | $2 \times 2$ |                |
| If $\sigma = 321$ , | 3 	imes 3    |                |
|                     | $4 \times 4$ |                |
| should you play     | 5	imes 5     |                |
| first or second?    | 6 	imes 6    |                |
|                     | 7 	imes 7    |                |
|                     | $8 \times 8$ |                |

< 🗗 🕨

|                     | Board Size   | Winning Player |
|---------------------|--------------|----------------|
|                     | 1 	imes 1    | first          |
|                     | $2 \times 2$ | second         |
| If $\sigma = 321$ , | $3 \times 3$ |                |
|                     | $4 \times 4$ |                |
| should you play     | 5 	imes 5    |                |
| first or second?    | 6 	imes 6    |                |
|                     | $7 \times 7$ |                |
|                     | $8 \times 8$ |                |

< 🗗 🕨

|                     | Board Size   | Winning Player |
|---------------------|--------------|----------------|
|                     | 1 	imes 1    | first          |
|                     | $2 \times 2$ | second         |
| If $\sigma = 321$ , | 3 	imes 3    | first          |
|                     | $4 \times 4$ |                |
| should you play     | 5 	imes 5    |                |
| first or second?    | 6 	imes 6    |                |
|                     | 7 	imes 7    |                |
|                     | $8 \times 8$ |                |

< 4 → <

|                     | Board Size   | Winning Player |
|---------------------|--------------|----------------|
|                     | 1 	imes 1    | first          |
|                     | $2 \times 2$ | second         |
| If $\sigma = 321$ , | $3 \times 3$ | first          |
|                     | $4 \times 4$ | second         |
| should you play     | 5 	imes 5    | first          |
| first or second?    | 6 	imes 6    | second         |
|                     | $7 \times 7$ |                |
|                     | $8 \times 8$ |                |

< 🗗 🕨

|                     | Board Size   | Winning Player |
|---------------------|--------------|----------------|
|                     | 1 	imes 1    | first          |
|                     | $2 \times 2$ | second         |
| If $\sigma = 321$ , | $3 \times 3$ | first          |
|                     | 4 	imes 4    | second         |
| should you play     | 5 	imes 5    | first          |
| first or second?    | 6 	imes 6    | second         |
| first or second?    | $7 \times 7$ | first          |
|                     | $8 \times 8$ | first!!!       |

< 🗗 🕨

|                   | Board Size   | Winning Player |
|-------------------|--------------|----------------|
|                   | 1 	imes 1    | first          |
| If $\sigma=$ 321, | $2 \times 2$ | second         |
|                   | $3 \times 3$ | first          |
|                   | $4 \times 4$ | second         |
| should you play   | 5 	imes 5    | first          |
| first or second?  | 6 	imes 6    | second         |
| first or second?  | $7 \times 7$ | first          |
|                   | $8 \times 8$ | first!!!       |

### **Open Problem**

Find the general pattern.

Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words 3

## Where to Learn More

DISCRETE MATHEMATICS AND ITS APPLICATIONS Series Editor KENNETH H. ROSEN

#### COMBINATORICS OF PERMUTATIONS

Second Edition



#### Sergey Kitaev

Patterns in Permutations and Words

Deringer

(日) (同) (三) (三)

Eric S. Egge (Carleton College)

05A06: Patterns in Permutations and Words

September 20, 2014 32 / 34

#### www-circa.mcs.st-and.ac.uk/PermutationPatterns2007/talks/west.pdf

E. Steingrímsson. Some open problems on permutation patterns. In Surveys in Combinatorics, Cambridge University Press, 2013.

Thank You!

<ロ> (日) (日) (日) (日) (日)

3