
Introducing 05A06: Patterns in Permutations and Words

Eric S. Egge

Carleton College

September 20, 2014

Eric S. Egge (Carleton College) Introducing 05A06: Patterns in Permutations and WordsSeptember 20, 2014 1 / 34



The Case

There are connections with many other areas.

There are already numerous cool results.

We’ve answered some deep questions.

Even more open problems remain, some just as deep.

Surprising and exciting new ideas and approaches surface regularly.

There’s room for all, from undergraduates to wily veterans.
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The Definition

Definition

Suppose π and σ are permutations, written in one-line notation. An
occurrence of σ in π is a subsequence of π whose entries are in the same
relative order as the entries of σ.
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The Definition

Definition

Suppose π and σ are permutations, written in one-line notation. An
occurrence of σ in π is a subsequence of π whose entries are in the same
relative order as the entries of σ.

Example

3561274 contains 9 occurrences of 21.
(inversions)
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The Definition

Definition

Suppose π and σ are permutations, written in one-line notation. An
occurrence of σ in π is a subsequence of π whose entries are in the same
relative order as the entries of σ.

Example

3561274 contains 12 occurrences of 12.
(coinversions)
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The Definition

Definition

Suppose π and σ are permutations, written in one-line notation. An
occurrence of σ in π is a subsequence of π whose entries are in the same
relative order as the entries of σ.

Example

3561274 contains 7 occurrences of 312.
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The Definition

Definition

Suppose π and σ are permutations, written in one-line notation. An
occurrence of σ in π is a subsequence of π whose entries are in the same
relative order as the entries of σ.

Example

3561274 contains 7 occurrences of 312.
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The Definition in Pictures

Definition

Suppose π and σ are permutations, written in one-line notation. An
occurrence of σ in π is a subsequence of π whose entries are in the same
relative order as the entries of σ.

r
r r

r r

r
r

3 5 6 1 2 7 4
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The Definition in Pictures

r r r r r
r r r r r r r

r r r r r r r
r r r r r r r

r r r r r r r
r r r r r r r

r r r r r r r
r r

Observation

Every symmetry f of the square is a bijection between occurrences of σ in
π and occurrences of σf in πf .
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Enumeration Questions

σ[π] := number of occurrences of σ in π

Theorem (Rodrigues, 1839)

∑
π∈Sn

q21[π] = 1(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)
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Enumeration Questions

σ[π] := number of occurrences of σ in π

Theorem (Rodrigues, 1839)

∑
π∈Sn

q21[π] = 1(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)

Problem

For each σ, find
∑
π∈Sn

qσ[π].
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Enumeration Questions

σ[π] := number of occurrences of σ in π

Theorem (Rodrigues, 1839)

∑
π∈Sn

q21[π] = 1(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)

Ambition

For each σ, find
∑
π∈Sn

qσ[π].
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Enumeration Questions

σ[π] := number of occurrences of σ in π

Theorem (Rodrigues, 1839)

∑
π∈Sn

q21[π] = 1(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)

Dream

For each σ, find
∑
π∈Sn

qσ[π].
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Enumeration Questions

σ[π] := number of occurrences of σ in π

Theorem (Rodrigues, 1839)

∑
π∈Sn

q21[π] = 1(1 + q)(1 + q + q2) · · · (1 + q + · · ·+ qn−1)

Opium-Induced Fever Dream

For each σ, find
∑
π∈Sn

qσ[π].
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Pattern Avoidance: Reining in Our Ambitions

Definition

We say π avoids σ whenever σ[π] = 0.
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Pattern Avoidance: Reining in Our Ambitions

Definition

We say π avoids σ whenever σ[π] = 0.

Avn(σ) = Sn(σ) := set of permutations in Sn which avoid σ

Question

For each n and each σ, what is |Avn(σ)|?
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Pattern Avoidance: Reining in Our Ambitions

Definition

We say π avoids σ whenever σ[π] = 0.

Avn(R) = Sn(R) := set of permutations in Sn which avoid all σ ∈ R

Question

For each n and each R, what is |Avn(R)|?
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Pattern Avoidance: Reining in Our Ambitions

Definition

We say patterns σ1 and σ2 are Wilf-equivalent whenever

|Avn(σ1)| = |Avn(σ2)|

for all n.

Question

Which patterns of each length are Wilf-equivalent?
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Enumerative Results

σ |Avn(σ)| OGF

123
132

Cn =
1

n + 1

(
2n

n

)
1−
√

1− 4x

2x
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More Enumerative Results

R |Avn(R)| OGF

123, 132 2n−1
1− x

1− 2x

123, 231 1 +

(
n

2

)
1− 2x + 2x2

(1− x)3

123, 321 0 for n ≥ 5 1 + x + 2x2 + 4x3 + 4x4

123, 132, 213 Fn+1
1

1− x − x2

123, 132, 231 n
1

(1− x)2
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Even More Enumerative Results

R |Avn(R)| OGF

123, 3412 2n+1 −
(n + 1

3

)
− 2n − 1

1− 5x + 10x2 − 9x3 + 4x4

(1− 2x)(1− x)4

132, 4231 1 + (n − 1)2n−2 1− 4x + 5x2 − x3

(1− 2x)2(1− x)
123, 2143
123, 2413
132, 2314
132, 2341
312, 2314
312, 3241
312, 3214
123, 3214
312, 4321
312, 3421
132, 3241
132, 3412
312, 1432
312, 1342

F2n
1− 2x

1− 3x + x2
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Still More Enumerative Results

R |Avn(R)| OGF

2143, 3412

(
2n

n

)
−

n−1∑
m=0

2n−m−1
(
2m

m

)
1− 3x

(1− 2x)
√
1− 4x

1234, 3214
4123, 3214
2341, 2143
1234, 2143

4n−1 + 2

3

x(1− 3x)

(1− x)(1− 4x)

1324, 2143
1342, 2431
1342, 3241
1342, 2314
1324, 2413

1− 5x + 3x2 + x2
√
1− 4x

1− 6x + 8x2 − 4x3

2413, 3142
1234, 2134
1324, 2314
3124, 3214
3142, 3214
3412, 3421
1324, 2134
3124, 2314
2134, 3124

rn−1 =
n∑

d=0

Cn−d

(
2n − d

d

)
1− x −

√
1− 6x + x2

2x
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Some Open Enumerative Problems

R |Avn(R)| for n = 5, 6, 7, 8, 9, 10
1234, 3412 86, 333, 1235, 4339, 14443, 45770
1243, 4231 86, 335, 1266, 4598, 16016, 53579
1324, 3412 86, 335, 1271, 4680, 16766, 58656
1324, 4231 86, 336, 1282, 4758, 17234, 61242
1243, 3412 86, 337, 1295, 4854, 17760, 63594
1324, 2341 87, 352, 1428, 5768, 23156, 92416
1342, 4123 87, 352, 1434, 5861, 24019, 98677
1243, 2134 87, 354, 1459, 6056, 25252, 105632
1243, 2431 88, 363, 1507, 6241, 25721, 105485
1324, 2431 88, 363, 1508, 6255, 25842, 106327
1243, 2341 88, 365, 1540, 6568, 28269, 122752
1342, 3412 88, 366, 1556, 6720, 29396, 129996
1243, 2413 88, 367, 1568, 6810, 29943, 132958
1243, 3124 88, 367, 1571, 6861, 30468, 137229
1234, 2341 89, 376, 1611, 6901, 29375, 123996
1342, 2413 89, 379, 1664, 7460, 33977, 156727
1324, 1432 89, 380, 1677, 7566, 34676, 160808
1234, 1342 89, 380, 1678, 7584, 34875, 162560
1432, 2143 89, 381, 1696, 7781, 36572, 175277
1243, 1432 89, 382, 1711, 7922, 37663, 182936
2143, 2413 90, 395, 1823, 8741, 43193, 218704
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Just A Couple More Enumerative Results

σ |Avn(σ)|
1234
1243
2143
3214

1

(n + 1)2(n + 2)

n∑
j=0

(2j
j

)(n + 1

j + 1

)(n + 2

j + 1

)

1342
2413

(−1)n−1 7n
2 − 3n − 2

2
+ 3

n∑
j=2

(2j − 4)!

j!(j − 2)!

(n − j + 2

2

)
(−1)n−j2j+1

1324 Unknown beyond n = 36
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A Cool Picture
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The Bet

“Not even God knows |Av1000(1324)|.”
Doron Zeilberger

“I’m not sure how good
Zeilberger’s God is at math,

but I believe that some humans will find this number in the not so distant
future.”

Einar Steingŕımsson
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The Stanley-Wilf Conjecture

Theorem

For all σ ∈ S3,

lim
n→∞

n
√
|Avn(σ)| = 4.

Wilf’s First Question, ∼ 1980

Is

|Avn(σ)| ≤ (|σ|+ 1)n

for all n?

Theorem (Regev, 1981)

lim
n→∞

n
√
|Avn(12 · · · k)| = (k − 1)2
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The Stanley-Wilf Conjecture

Stanley’s Question, ∼ 1980

Is

lim
n→∞

n
√
|Avn(σ)| = (|σ| − 1)2

for all σ?

Wilf’s Next Question

Does there exist, for each σ, a
constant c(σ) with

lim
n→∞

n
√
|Avn(σ)| = c(σ)?
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The Stanley-Wilf Conjecture

The Stanley-Wilf Upper Bound Conjecture

For every σ there is a constant c(σ) such that

|Avn(σ)| ≤ c(σ)n.

The Stanley-Wilf Limit Conjecture

For every σ there is a constant c(σ) such that

lim
n→∞

n
√
|Avn(σ)| = c(σ).

Limit ⇒ Upper Bound: Clear

Upper Bound ⇒ Limit: Arratia 1999
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Interlude: Other Notions of Containment

Generalized = Consecutive = Vincular

2413

2− 41− 3
t

t
t

t

Example

25314 contains 2413 but avoids 2413.
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Interlude: Other Notions of Containment

Bivincular

2314 t t
t

t

Example

315246 contains 2314 but avoids 2314.
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The Füredi-Hajnal Conjecture

Convention: Matrices use only entries 0 and 1.

Definition

A matrix M contains a matrix C whenever M has a submatrix Msub of C ’s
dimensions such that Msub has a 1 in every place C has a 1.

Example1 0 1
0 1 1
1 1 0

 contains

(
0 1
1 0

)
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The Füredi-Hajnal Conjecture

The Füredi-Hajnal Question, 1992

Given a matrix C , how many 1s can an n × n matrix M contain before it
must contain C?

The Füredi-Hajnal Conjecture

If C is a permutation matrix then there is a number c(C ) such that if an
n × n matrix M has at least c(C )n entries equal to 1, then M contains C .

Theorem (Klazar, 2001)

Füredi-Hajnal ⇒ Stanley-Wilf
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Füredi-Hajnal ⇒ Stanley-Wilf
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The Marcus-Tardos Theorem

Fall 2003 Adam Marcus starts his Fulbright in Hungary,
working with Gábor Tardos

Late 2003 Marcus and Tardos prove the
Füredi-Hajnal conjecture

Weeks Later Marcus and Tardos learn about the
Stanley-Wilf conjecture
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How Long Did It Take to Prove the Stanley-Wilf
Conjecture?

Richard Stanley before

Richard Stanley after
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Growth Rates

Definition

For each σ,

L(σ) := lim
n→∞

n
√
|Avn(σ)|.

Theorem (Bevan, 2014)

L(1324) ≥ 9.81

Theorem (Bóna, 2013)

L(1324) ≤ 13.738

σ L(σ)

123
132

4

1234
1243
2143
3214

9

1342
2413

8

1324

[9.81,13.738]

12 · · · k (k − 1)2
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Growth Rates and Inversions

Conjecture (Claesson, Jeĺınek, Steingŕımsson, 2012)

For any σ 6= 12 · · · k, and any j ≥ 0, the number of σ-avoiders with j
inversions is a nondecreasing function of length.
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For any σ 6= 12 · · · k, and any j ≥ 0, the number of σ-avoiders with j
inversions is a nondecreasing function of length.

132-avoiders with exactly 2 inversions

n 0 1 2 3 4 5 6 7 8

number 0 0 0 2 2 2 2 2 2
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231-avoiders with exactly 2 inversions

n 0 1 2 3 4 · · ·
number 0 0 0 1 3 · · ·

Eric S. Egge (Carleton College) 05A06: Patterns in Permutations and Words September 20, 2014 26 / 34



Growth Rates and Inversions

Conjecture (Claesson, Jeĺınek, Steingŕımsson, 2012)

For any σ 6= 12 · · · k, and any j ≥ 0, the number of σ-avoiders with j
inversions is a nondecreasing function of length.

Theorem (Claesson, Jeĺınek, Steingŕımsson, 2012)

If the CJS conjecture holds for σ = 1324, then

L(1324) <

eπ
√

2/3 ≈

13.001954.
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For any σ 6= 12 · · · k, and any j ≥ 0, the number of σ-avoiders with j
inversions is a nondecreasing function of length.
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The Conway-Guttmann Estimate

Conjecture (Conway and Guttmann, 2014)

There are constants B, µ, µ1, and g such that

|Avn(1324)| ∼ Bµnµ
√
n

1 ng .

µ = 11.60± 0.01

µ1 = 0.0398± 0.001

g = −1.1± 0.2

B = 9.5± 1.0
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The Dukes-Parton-West Permutation Patterns Game

Fix a permutation σ.

Players take turns placing stones on
grid points.

No two stones may be in the same
row or column.

No occurrence of σ allowed.

Last player to move wins.
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Would You Like to Play a Game?

σ = 21

Is it better to play first or second?
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What If Your Opponent Goes First, But Is Confused?

u

σ = 21

Where should you play?
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A More Complicated Pattern

If σ = 321,

should you play

first or second?

Board Size Winning Player

1× 1

first

2× 2

second

3× 3

first

4× 4

second

5× 5

first

6× 6

second

7× 7

first

8× 8

first!!!

Open Problem

Find the general pattern.
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Where to Learn More
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Two More References

www-circa.mcs.st-and.ac.uk/PermutationPatterns2007/talks/west.pdf

E. Steingŕımsson. Some open problems on permutation patterns. In
Surveys in Combinatorics, Cambridge University Press, 2013.
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The End

Thank You!
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