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Permutations and Pattern Avoidance

Definition

π, σ are permutations.
π avoids σ whenever π has no subsequence
with same length and relative order as σ.

Example

6152347 avoids 231 but not 213.

Notation

Av(σ) := set of all permutations which
avoid σ.

Avn(σ) = Av(σ) ∩ Sn
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The diagram of 6152347.
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t
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Counting Pattern-Avoiding Permutations

|Avn(132)| = |Avn(213)| = |Avn(231)| = |Avn(312)|

t
t t t t

t t t
t

t
t t

|Avn(321)| = |Avn(123)|t t t t t t

Idea

Rotation of diagrams gives bijections
among these sets.

Theorem

|Avn(231)| = |Avn(321)| = Cn =
1

n + 1

(
2n

n

)
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Catalan Paths

Definition

A Catalan path (of length n) is a
sequence of n North (0, 1) steps and n
East (1, 0) steps which never passes
below the line y = x .
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Theorem

The number of Catalan paths of length n is

Cn =
1

n + 1

(
2n

n

)
.
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Recursive Structures

Permutations

t t
t t

t t
t t

12438756 avoids 231.

Idea

F (π1 ⊕ π2) = N F (π2) E F (π1)
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Bonus Information: Inversions

Definition

An inversion in a permutation is an occurence of the pattern 21.

Theorem

inv(π1 ⊕ π2) = inv(π1) + inv(π2) + length(π2)
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Bonus Information: Inversions and Area

Definition

The area of a lattice path π is the number of full squares below π and
above y = x .

Theorem

area(π1 ⊕ π2) = area(π1) + area(π2) + length(π2)

Theorem

inv(π) = area(F (π))
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A Bonus Bonus

Definition

For any permutation π and number k , let k(π) be the number of
decreasing subsequences of length k in π.

Definition

The height ht(s) of an East step s in a Catalan path π is the number of

area squares below it. The kth area of π is areak(π) =
∑

s∈π
(ht(s)
k−1
)
.

Theorem

k(π) = areak(F (π))

and ∑
π∈Av(231)

x
1(π)
1 x

2(π)
2 x

3(π)
3 · · · = 1

1− x1
1− x1x2

1−
x1x

2
2
x3

···

.
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|Avn(321)| = Cn

t
t

t
t t

t t
t

41623785 avoids 321.

Theorem

This process produces a Catalan path for
any permutation.

Idea

If the ith East step is below y = x then the
first i buildings are all height i − 1 or less.

Theorem

The restriction to Av(321) is a bijection.

Idea

To avoid 321, we must have increasing heights in the canyons.
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The Schröder Case

�
�
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A Schröder Path

rn =
n∑

d=0

(
2n − d

d

)
Cn−d

Theorem

|Avn(3421, 3412)| = rn−1

Theorem

k(π) = areak(F (π))

and ∑
π∈Av(3421,3412)

x
1(π)
1 x

2(π)
2 x

3(π)
3 · · · = 1 +

x1
1− x1 − x1x2

1−x1x2−
x1x

2
2
x3

···

.
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An Open Schröder Problem

Conjecture

|Avn(2413, 2143, 415263)| = rn−1
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The End

Thank You!
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