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Borel Ideals

GLn := set of invertible n × n matrices over C

B(n) := set of upper triangular matrices in GLn

Fact

GLn has a natural action on C[x1, . . . , xn], so B(n) does, too.

Definition

A Borel ideal is an ideal in C[x1, . . . , xn] which is closed under the action
of B(n).
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Catalan Combinatorics of Borel Ideals

Theorem (Francisco, Mermin, and Schweig)

The Borel ideal generated by x1x2 · · · xn has a minimal generating set (as
an ordinary ideal) of Cn monomials.

Idea:
xi 7→ xj j < i

transforms every generating monomial to another generating monomial.
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Catalan Combinatorics of Borel Ideals

x2
1x3

x1x2x3

x2
1x2

x1x2
2

x3
1

�
���

��

H
HHH

HH

HHH
HHH

�
�

�
�

�
�
��

@
@
@
@
@
@
@

x2 → x1 x3 → x2

x3 → x1

x2 → x1
x2 → x1

x3 → x1

x3 → x2

Eric S. Egge (Carleton College) Catalan Combinatorics of Borel Ideals September 21, 2014 4 / 19



Catalan Combinatorics of Borel Ideals

x2
1x3

x1x2x3

x2
1x2

x1x2
2

x3
1

�
���

��

H
HHH

HH

HHH
HHH

�
�

�
�

�
�
��

@
@
@
@
@
@
@

x2 → x1 x3 → x2

x3 → x1

x2 → x1
x2 → x1

x3 → x1

x3 → x2

Eric S. Egge (Carleton College) Catalan Combinatorics of Borel Ideals September 21, 2014 4 / 19



Bijection with Catalan Paths

Observation: The minimal generators are the monomials of degree n
whose total degree in x1, . . . , xj is at least j for all j .

variables

degree

x1 x1 x1 x1

x2 x2 x2

x3 x3

x4
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Bijection with Catalan Path Example

x2
1x2x2

3x4 7→

x1

x1

x2

x3

x3

x4
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Betti Numbers of Borel Ideals

Cn,k := number of minimal generators of 〈x1x2 · · · xn〉B
with largest variable xk

Observation

Cn,k is the number of Catalan paths from (0, 0) to (k − 1, n − 1).

Cn,k =
n − k + 1

n

(
n + k − 2

k − 1

)
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Betti Numbers of Borel Ideals

Theorem (Francisco, Mermin, and Schweig)

The jth Betti number bn,j of 〈x1x2 · · · xn〉B is the number of ordered pairs
(m, α) such that

m is a minimal generator and

α is a square free monomial of degree j whose largest variable is less
than the largest variable of m.

Corollary

bn,j =
n∑

k=1

Cn,k

(
k − 1

j

)
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(
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Combinatorics of bn,j : Leaf-Marked Trees

Theorem (Francisco, Mermin, and Schweig)

bn,j is the number of binary trees with

j marked leaves and

n unmarked vertices,

in which the rightmost leaf is not marked.
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Combinatorics of bn,j : Branch-Marked Trees

Theorem (Francisco, Mermin, and Schweig)

bn,j is the number of binary trees with

j marked vertices with two children and

n unmarked vertices.
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Combinatorics of bn,j : North-Marked Catalan Paths

Theorem (Egge, Rubin)

bn,j is the number of Catalan paths with

j marked North steps, none touching y = x,
and

n − j unmarked North steps.
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Combinatorics of bn,j : 132-Avoiding Permutations

Theorem (Egge)

bn,j is the number of 132-avoiding permutations with

n unbarred entries,

j barred entries,

1 is not barred,

every barred entry is a local minimum.

2314 2341 3241 3412 3421 4231
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Combinatorics of bn,j : 321-Avoiding Permutations

Theorem (Egge)

bn,j is the number of 321-avoiding permutations with

n entries and

j inversions marked.

132 213 231 231 312 312
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Combinatorics of bn,j : Triangulations

Theorem (Egge)

bn,j is the number of

triangulations of an n + j + 2-gon,

with j shaded triangles with two edges on the
boundary,

in which the triangle adjacent to the bottom edge
is not shaded

and the rightmost boundary triangle is not shaded.
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Combinatorics of bn,j : Noncrossing Partitions

Theorem (Egge)

bn,j is the number of

noncrossing partitions of [n + j ]

in which j minima in blocks of size 2 or more are
barred, but

1 is not barred.

1/234 12/34 14/23 1/23/4 1/24/3 1/2/34

Eric S. Egge (Carleton College) Catalan Combinatorics of Borel Ideals September 21, 2014 15 / 19



Combinatorics of bn,j : Noncrossing Partitions

Theorem (Egge)

bn,j is the number of

noncrossing partitions of [n + j ]

in which j minima in blocks of size 2 or more are
barred, but

1 is not barred.

1/234 12/34 14/23 1/23/4 1/24/3 1/2/34

Eric S. Egge (Carleton College) Catalan Combinatorics of Borel Ideals September 21, 2014 15 / 19



Conjectured Combinatorics of bn,j : Dumont Permutations

Definition

A Dumont permutation (of the first kind) is a permutation in which every
even entry is followed by a descent, each odd entry is followed by an
ascent, and the last entry is odd.

Theorem (Burstein)

The number of Dumont permutations of length 2n which avoid 2413 and
3142 is

n−1∑
j=0

bn,j .
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Conjectured Combinatorics of bn,j : Rotationally Symmetric
Permutations

s s
s
s

s s
s
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56381274

Conjecture (Egge)

The number of rotationally symmetric permutations of length 4n which
avoid 2413 is

n−1∑
j=0

bn,j .
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A k-ary Generalization

Theorem (Egge)

The Borel ideal generated by

x1 x1+k x1+2k · · · x1+(n−1)k

has a minimal generating set of

1

(k − 1)n + 1

(
kn

n

)
monomials.

Theorem (Egge)

The jth Betti number of

〈x1 x1+k x1+2k · · · x1+(n−1)k〉B

is the number of k-ary trees with

n unmarked vertices and

j marked leaves, such that

the rightmost leaf is unmarked.
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The End

Thank You!
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