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The Chromatic Symmetric Function of a Graph

Our “colors” are the variables x1, x2, x3, . . ..

For any proper coloring C of G , x(C ) is the product of the colors.

Definition (Stanley)

The chromatic symmetric function of G is

XG =
∑

C proper coloring of G

x(C ).
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Switching

In a signed graph with sign function σ, assign a sign S(v) to each
vertex v .

If e connects v1 and v2 then we get a new sign function τ on edges

τ(e) = S(v1)σ(e)S(v2)
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x1, x−1, x2, x−2, x3, x−3 . . . .

A proper coloring of a signed graph is a coloring in which

implies

xa 6= xσb

Fact
If G and H are related by switching then there is a natural
bijection between their sets of proper colorings.
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For a signed graph G , the chromatic symmetric function of G is
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∑
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Observation
YG is invariant under the natural action of the hyperoctahedral
group, which is the set of permutations π of ±1,±2, . . . such that

π(−j) = −π(j)

for all j .
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The Chromatic Symmetric Function of a Signed Graph

Definition
For a signed graph G , the chromatic symmetric function of G is

YG =
∑

C proper coloring of G
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Observation

YG ∈ BSym



Marked Ferrers Diagrams

Goal: a basis for BSym.

Definition
A marked Ferrers diagram is a Ferrers diagram in which some (or
no) boxes contain dots, such that

I the rows of dotted boxes are left-justified and

I for each k, the dotted boxes in the rows of length k form a
Ferrers diagram.

|λ| := total number of boxes and dots in λ
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A BSym Basis

BSymn := space of homogeneous invariant series of total degree n

For any marked Ferrers diagram λ, mλ is the sum of the distinct
images of λ’s monomial.

Theorem
{mλ | |λ| = n} is a basis for BSymn.
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n 0 1 2 3 4 5 6 7 8

dimBSymn 1 1 3 5 11 18 35 57 102

Theorem ∞∑
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dim(BSymn)xn =
∞∏
j=1

(
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The Power Sum Basis

pλ := mλ for any λ with just one row

pλ1,...,λk := pλ1 · · · pλk
for any list λ1, . . . , λk of row shapes

Theorem
If we linearly order the set of row shapes then

{pλ1,...,λk |
∑
j

|λj | = n and λ1 ≥ · · · ≥ λk}

is a basis for BSymn.
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The Elementary Basis?

eλ := mλ for any λ with just one column

eλ1,...,λk := eλ1 · · · eλk
for any list λ1, . . . , λk of column shapes

Conjecture
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is a basis for BSymn.
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The chromatic polynomial χG (n) of a signed graph G is the
number of proper colorings of G with x1, x−1, . . . , xn, x−n.

Theorem
If G is a signed graph then

YG (1, 1, . . . , 1︸ ︷︷ ︸
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Theorem
If a signed graph G is a disjoint union of signed graphs G1 and G2

then
YG = YG1 · YG2 .

Theorem
If all of the edges in a signed graph G are positive then

YG = XG (x1, x−1, x2, x−2, . . .).
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Switching Does Not Preserve YG

m r + 2m m + 2m



The Power Basis Expansion

Definition
For any connected, signed graph G , the type λ(G ) of G is the row
shape consisting of k boxes and m dots, where G can be colored
with k x1s and m x−1s so that every edge is improper. If G is not
connected then its type is the sequence of types of its connected
components.

s sλ(G ) =
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The Power Basis Expansion

Definition
A connected signed graph G is 2-faced whenever there are two
colorings of its vertices with x1 and x−1 which are improper along
every edge, and which have at least as many x1s as x−1s.

Theorem
For any signed graph G with edge set E ,

YG =
∑
S⊆E

(−1)|S |2tf (S)pλ(S),

where tf (S) is the number of 2-faces of S and pλ(S) = 0 if S has
no type.
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