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FS-Containment

Flajolet and Sedgewick (2009):

An FS-copy of T1 in T2 is a node in T1 whose dangling subtree (including
all of its children) is isomorphic to T1.
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FS-Containment

Entire subtree of chosen root must match.

Removing vertices can create a copy.
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R-Containment

Rowland (2010):

An R-copy of T1 in T2 is a connected copy of T1 in T2.

Adjacencies must match but the entire subtree might not.
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P-Containment

Dairyko, Pudwell, Tyner, Wynn (2012) and Pudwell, Scholten, Schrock,
and Serrato (2014):

For full trees (no node has exactly 1 child), a P-copy of T1 in T2 is a set E
of edges in T2 such that

for each node v in T2,
both edges from v are in E or neither is,

and

the tree left after contracting all edges not in E is isomorphic to T1.
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A P-Containment Example
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A P-Containment Nonexample

is not P-contained in
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C-Containment, Part I

Definition

A binary tree is a finite set (of vertices or nodes) T together with relations
<L (is a left descendant of) and <R (is a right descendant of) such that

1 For all t ∈ T we have t 6< t. (< means <L or <R .)

2 There exists a unique r ∈ T such that if s ∈ T and s 6= r , then s < r .
We call r the root of T .

3 etcetera.
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Definition

A binary tree is a finite set (of vertices or nodes) T together with relations
<L (is a left descendant of) and <R (is a right descendant of) such that

1 For all t ∈ T we have t 6< t. (< means <L or <R .)
2 There exists a unique r ∈ T such that if s ∈ T and s 6= r , then s < r .

We call r the root of T .
3 For all s, t, u ∈ T , if s < t and t <L u then s <L u. Similarly, if s < t

and t <R u then s <R u.
4 For all s, t ∈ T , at most one of the following holds: s <L t, s <R t,

t <L s, and t <R s.
5 For all s ∈ T , if the set of all t ∈ T with t <L s is nonempty, then

there is a unique u ∈ T such that u <L s and if t 6= u has t <L s
then t < u.

6 For all s ∈ T , if the set of all t ∈ T with t <R s is nonempty, then
there is a unique u ∈ T such that u <R s and if t 6= u has t <R s
then t < u.
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C-Containment, Part II

A C-copy of T1 in T2 is a set T of vertices in T2 for which

the restriction of <L and <R to T

is a binary tree isomorphic to T1.

has ? P-copies of
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C-Containment, Part II

A C-copy of T1 in T2 is a set T of vertices in T2 for which

the restriction of <L and <R to T

is a binary tree isomorphic to T1.

has 3 P-copies of

Eric S. Egge (Carleton College) Tree Containment October 4, 2015 21 / 42



C-Containment, Part II
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C-Containment, Part II

A C-copy of T1 in T2 is a set T of vertices in T2 for which

the restriction of <L and <R to T

is a binary tree isomorphic to T1.

has 11 C-copies of
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C-Avoidance and P-Avoidance

avoids := contains no copy of

Theorem (Egge)

For any full binary trees T1 and T2, T2 C-avoids T1 if and only if T2

P-avoids T1.

Proof of contrapositive: In a P-copy, take the vertices with two kept edges
going down and the vertices with no kept edges anywhere below.

In a C-copy, move chosen non-root vertices with unchosen partners up
until siblings are chosen in pairs and keep all edges up from nonroot
chosen vertices.
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Paths and Mountains
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C-Avoiding Paths

Theorem (Egge)

If Fk(x) is the ogf for binary trees with n vertices C-avoiding a right
k-path then

Fk(x) =
Uk−1

(
1

2
√
x

)
√
xUk

(
1

2
√
x

) ,
where

Uk(x) =

b n
2
c∑

k=0

(−1)k
(
n − k

k

)
(2x)n−2k

is the kth Chebyshev polynomial of the second kind.
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C-Avoiding Mountains

Theorem (Egge)

For any k-mountain M, the number of binary trees with n vertices
C-avoiding M is equal to the number of binary trees with n vertices
C-avoiding a right k-path.

Sketch of proof: compute the generating function recursively and use
identities for the Chebyshev polynomials.

Eric S. Egge (Carleton College) Tree Containment October 4, 2015 28 / 42



C-Avoiding Mountains

Theorem (Egge)

For any k-mountain M, the number of binary trees with n vertices
C-avoiding M is equal to the number of binary trees with n vertices
C-avoiding a right k-path.

Sketch of proof: compute the generating function recursively and use
identities for the Chebyshev polynomials.

Eric S. Egge (Carleton College) Tree Containment October 4, 2015 28 / 42



Every Tree is (Equivalent to) a Mountain

The same number of trees of each size avoid each of
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Every Tree is (Equivalent to) a Mountain

f (T ) is the foliation (fulliation?) of T

Theorem (Egge)

T1 C-avoids T2 if and only if f (T1) P-avoids f (T2).

Theorem (Dairyko, Pudwell, Tyner, and Wynn)

The number of full binary trees with 2n + 1 vertices which P-avoid T
depends only on the number of vertices in T .
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Counting C-Copies of Complete Trees

Problem: Given a binary tree, how many C-copies of the complete binary
tree with k levels does it contain?

Theorem (Egge)

There are exactly
2 · 4k − (2k + 1)2k − 1

copies of the complete binary tree with two levels (and three vertices) in
the complete binary tree with k levels.
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C-Copies and Continued Fractions

τk(T ) is the number of C-copies of the right k-path in T

Theorem (Egge)∑
T binary tree

∏
k≥1

x
τk (T )
k =

1

1− x1

1− x1x2

1− x1x
2
2x3

1− x1x
3
2x

3
3x4

1− x1x
4
2x

6
3x

4
4x5

1− · · ·

.
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Ternary Trees and C-Avoidance

Observation: C-avoidance generalizes to ternary trees, ordered trees, etc.
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Ternary Trees and C-Avoidance

Observation: C-avoidance generalizes to ternary trees, ordered trees, etc.

Theorem (Egge)

The number of ternary trees with n vertices C-avoiding both

and

is the number of Motzkin paths with n− 1 steps in which each level step is
one of three colors.
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Ternary Trees and C-Avoidance

Observation: C-avoidance generalizes to ternary trees, ordered trees, etc.

Theorem (Egge)

The number of ternary trees with n vertices C-avoiding both

and

is
1

n

n∑
k=0

(
2k + 1

k

)(
2n

n − k

)
k

2k + 1
.
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Binary Trees and 231-Avoiding Permutations

Fact: There is a bijection between binary trees with n vertices and
231-avoiding permutations on 1, 2, . . . , n.

Starting with a tree,

label the (current) root with the largest available number

send smaller numbers to the left, larger numbers to the right, and
label recursively

once every vertex is labelled

list the labels in the left subtree recursively
list the root’s label
list the labels in the right subtree recursively.
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The Bijection in Action
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The Bijection in Action
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The Permutations for Full Trees

Theorem (Egge)

Under our bijection the full binary trees are in bijection with 231-avoiding
permutations which

start with an ascent

end with a descent and

have alternating ascents and descents.
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C-Avoidance in Trees and Pattern Avoidance in
Permutations

Theorem (Egge)

T1 and T2 are binary trees with associated permutations π1 and π2.
If π1 avoids π2 then T1 C-avoids T2.

The converse is false.

Problem: find conditions under which the converse holds.
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The Last Slide

Thank you!
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