Pattern Avoiding Fishburn Permutations and Ascent Sequences

Eric S. Egge

Carleton College

April 7, 2022

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 π is a *Fishburn permutation* whenever π avoids

 π is a *Fishburn permutation* whenever π avoids

in words: whenever π has no subsequence $\pi_i \pi_{i+1} \pi_k$ with

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

• $\pi_{j+1} > \pi_j$ and • $\pi_k = \pi_j - 1.$

 π is a *Fishburn permutation* whenever π avoids

in words: whenever π has no subsequence $\pi_i \pi_{i+1} \pi_k$ with

•
$$\pi_{j+1} > \pi_j$$
 and
• $\pi_k = \pi_j - 1.$

Fishburn permutations are counted by the Fishburn numbers, whose generating function is

$$1 + \sum_{m=1}^{\infty} \prod_{j=1}^{m} (1 - (1 - x)^j).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● 臣 ■ のへで

 $a_1 \cdots a_n$ is a sequence of integers

 $a_1 \cdots a_n$ is a sequence of integers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

an *ascent* is a pair $a_j a_{j+1}$ with $a_{j+1} > a_j$

 $a_1 \cdots a_n$ is a sequence of integers

an *ascent* is a pair $a_j a_{j+1}$ with $a_{j+1} > a_j$

 $\operatorname{asc}(a_1 \cdots a_n) = \operatorname{number} \operatorname{of} \operatorname{ascents} \operatorname{in} a_1 \cdots a_n$

 $a_1 \cdots a_n$ is a sequence of integers

an *ascent* is a pair $a_j a_{j+1}$ with $a_{j+1} > a_j$

 $\operatorname{asc}(a_1 \cdots a_n) = \operatorname{number} \operatorname{of} \operatorname{ascents} \operatorname{in} a_1 \cdots a_n$

 $a_1 \cdots a_n$ is an *ascent sequence* whenever

▶
$$a_1 = 0$$
 and
▶ $0 \le a_j \le 1 + \operatorname{asc}(a_1 \cdots a_{j-1})$ for $2 \le j \le n$

 $a_1 \cdots a_n$ is a sequence of integers

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

an *ascent* is a pair $a_j a_{j+1}$ with $a_{j+1} > a_j$

 $\operatorname{asc}(a_1 \cdots a_n) = \operatorname{number} \operatorname{of} \operatorname{ascents} \operatorname{in} a_1 \cdots a_n$

 $a_1 \cdots a_n$ is an *ascent sequence* whenever

ascent sequences are also counted by the Fishburn numbers

The BCDK Bijection

Fact: if $\pi \in S_n$ is a Fishburn permutation and ρ is the permutation we get by removing *n* from π then ρ is also a Fishburn permutation.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

The BCDK Bijection

Fact: if $\pi \in S_n$ is a Fishburn permutation and ρ is the permutation we get by removing *n* from π then ρ is also a Fishburn permutation.

Consequence: we can build Fishburn permutations inserting the entries $1, 2, \ldots, n$ one at a time.

The BCDK Bijection

Fact: if $\pi \in S_n$ is a Fishburn permutation and ρ is the permutation we get by removing *n* from π then ρ is also a Fishburn permutation.

Consequence: we can build Fishburn permutations inserting the entries $1, 2, \ldots, n$ one at a time.

Idea: to obtain an ascent sequence from π , record the positions of insertion in the construction of π .

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Permutation Ascent Sequence 1 0

Permutation Ascent Sequence ⁰1¹ 0

Permutation Ascent Sequence ⁰1¹ 0 1 2 01

PermutationAscent Sequence $^{0}1^{1}$ 0 $^{0}1^{1}2^{2}$ 01

Permutation	Ascent Sequence
⁰ 1 ¹	0
$^{0}1^{1}2^{2}$	01
312	010

Permutation	Ascent Sequence
⁰ 1 ¹	0
$^{0}1^{1}2^{2}$	01
⁰ 3 1 ¹ 2 ²	010

Permutation	Ascent Sequence
⁰ 1 ¹	0
$^{0}1^{1}2^{2}$	01
⁰ 3 1 ¹ 2 ²	010
⁰ 3 1 ¹ 2 ² 4 ³	0102

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Permutation	Ascent Sequence
⁰ 1 ¹	0
$^{0}1^{1}2^{2}$	01
⁰ 3 1 ¹ 2 ²	010
$^{0}3 \ 1^{1}2^{2}4^{3}$	0102
⁰ 3 1 ¹ 5 2 ² 4 ³	01021

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

 π and σ are sequences of nonnegative integers and $|\sigma|=k$

 π and σ are sequences of nonnegative integers and $|\sigma|=k$

A *copy* of σ in π is a subsequence of length k with the same relative order as σ .

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

 π and σ are sequences of nonnegative integers and $|\sigma|=k$

A *copy* of σ in π is a subsequence of length k with the same relative order as σ .

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 π avoids σ whenever there are no copies of σ in π

 π and σ are sequences of nonnegative integers and $|\sigma|=k$

A *copy* of σ in π is a subsequence of length k with the same relative order as σ .

Notation

 π avoids σ whenever there are no copies of σ in π

 $F_n(\sigma_1,\ldots,\sigma_k)$

Fishburn permutations which avoid

 σ_1,\ldots,σ_k

 $A_n(\sigma_1,\ldots,\sigma_k)$

ascent sequences which avoid $\sigma_1, \ldots, \sigma_k$

```
F_n(3412) and A_n(201)
```

Conjecture (Gil and Weiner) $|F_n(3412)| = |A_n(201)|$ for all $n \ge 0$.


```
F_n(3412) and A_n(201)
```

Conjecture (Gil and Weiner) $|F_n(3412)| = |A_n(201)|$ for all $n \ge 0$.

Theorem (E)

For all $n \ge 0$, the BCDK map is a bijection between $F_n(3412)$ and $A_n(201)$.

Only 123 and 321 are interesting in S_3

Goal: investigate $|F_n(\sigma_1, \ldots, \sigma_k)|$ for various $\sigma_1, \ldots, \sigma_k$.

Only 123 and 321 are interesting in S_3

Goal: investigate $|F_n(\sigma_1, \ldots, \sigma_k)|$ for various $\sigma_1, \ldots, \sigma_k$.

Gil and Weiner enumerate $F_n(\sigma_1, \ldots, \sigma_k)$ when $\sigma_1, \ldots, \sigma_k$ all have length three.

Only 123 and 321 are interesting in S_3

Goal: investigate $|F_n(\sigma_1, \ldots, \sigma_k)|$ for various $\sigma_1, \ldots, \sigma_k$.

Gil and Weiner enumerate $F_n(\sigma_1, \ldots, \sigma_k)$ when $\sigma_1, \ldots, \sigma_k$ all have length three.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem (E) If any of $\sigma_1, ..., \sigma_k$ is one of 132, 231, 213, 312 then $F_n(\sigma_1, ..., \sigma_k) = S_n(231, \sigma_1, ..., \sigma_k).$

 $F_n(123)$ and $A_n(012)$

Theorem (E)

The BCDK map is a bijection between $F_n(123)$ and ascent sequences containing only 0s and 1s.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

 $F_n(123)$ and $A_n(012)$

Theorem (E)

The BCDK map is a bijection between $F_n(123)$ and ascent sequences containing only 0s and 1s.

Theorem (E)

For all $n \ge 0$, the generating function $\sum_{\pi \in F_n(123)} q^{inv(\pi)} t^{Irmax(\pi)}$ is given by

$$t\sum_{s=0}^{n-2} q^{s^2+s-ns+\binom{n}{2}} {\binom{n-2}{s}}_q + t^2 \sum_{s=1}^{n-1} q^{s^2-ns+\binom{n}{2}} {\binom{n-2}{s-1}}_q$$

▲□ > ▲圖 > ▲目 > ▲目 > ▲目 > ● ④ < ⊙

Theorem (E) If $\sigma \in F_k(123)$ and $\sigma \neq k \ k - 1 \cdots 21$ then

$$|F_n(123,\sigma)| = \sum_{j=0}^{k-2} \binom{n-1}{j}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Theorem (E) If $\sigma \in F_k(123)$ and $\sigma \neq k \ k - 1 \cdots 21$ then

$$|F_n(123,\sigma)| = \sum_{j=0}^{k-2} \binom{n-1}{j}.$$

Observation: σ could contain the Fishburn pattern and still restrict $F_n(123)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Definition

 σ restrictive: avoids 123, contains the Fishburn pattern, and avoids both 2413 and 3412.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

 σ unrestrictive: avoids 123, contains the Fishburn pattern, and contains at least one of 2413 and 3412.

Definition

 σ restrictive: avoids 123, contains the Fishburn pattern, and avoids both 2413 and 3412.

 σ unrestrictive: avoids 123, contains the Fishburn pattern, and contains at least one of 2413 and 3412.

Theorem (E)

If σ is unrestrictive then $F_n(123, \sigma) = F_n(123)$ for all $n \ge 0$.

Definition

 σ restrictive: avoids 123, contains the Fishburn pattern, and avoids both 2413 and 3412.

 σ unrestrictive: avoids 123, contains the Fishburn pattern, and contains at least one of 2413 and 3412.

Theorem (E) If σ is unrestrictive then $F_n(123, \sigma) = F_n(123)$ for all $n \ge 0$. Theorem (E) If $k \ge 3$ and $\sigma \in S_k$ is restrictive then for all $n \ge 0$,

$$|F_n(123,\sigma)| = \sum_{j=0}^{k-1} \binom{n-1}{j}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

 $F_n(321, 1423)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

 $F_n(321, 1423)$

Theorem (E)

The generating tree for the Fishburn permutations which avoid 321 and 1423 is given by the following.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Root: (2x)

Rules: (1) → (2z) $(2x) \rightarrow (1), (3)$ $(2y) \rightarrow (2y), (2z)$ $(2z) \rightarrow (1), (2z)$ $(3) \rightarrow (2y), (1), (3)$

 $F_n(321, 1423)$

Theorem (E)

For all $n \ge 0$ we have

$$|F_n(321, 1423)| = F_{n+2} - n - 1.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Here $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

$F_n(321, 3124)$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

$F_n(321, 3124)$

Theorem (E)

The generating tree for the Fishburn permutations which avoid 321 and 3124 is given by the following.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Root: (2)

Rules: $(1a) \rightarrow (2)$ $(1b) \rightarrow (1b)$ $(k) \rightarrow \underbrace{(1b), \dots, (1b)}_{k-2}, (1a), (k+1)$

$F_n(321, 3124)$

Theorem (E)

For all $n \ge 0$ we have

$$|F_n(321, 3124)| = F_{n+2} - n - 1.$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

Here $F_0 = F_1 = 1$ and $F_n = F_{n-1} + F_{n-2}$ for $n \ge 2$.

$F_n(321, 2143)$

Theorem (E) For all $n \ge 0$, we have

$$\sum_{\pi \in F_n(321,2143)} t^{\mathsf{Irmax}(\pi)} = t(t+1)^{n-1}.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

$F_n(321, 2143)$

Theorem (E) For all $n \ge 0$, we have $\sum_{\pi \in F_n(321,2143)} t^{\operatorname{Irmax}(\pi)} = t(t+1)^{n-1}.$

Corollary

The number of $\pi \in F_n(321, 2143)$ with exactly k left to right maxima is $\binom{n-1}{k-1}$.

$F_n(321, 2143)$

Theorem (E) For all $n \ge 0$, we have $\sum_{\pi \in F_n(321,2143)} t^{\mathsf{Irmax}(\pi)} = t(t+1)^{n-1}.$

Corollary

The number of $\pi \in F_n(321, 2143)$ with exactly k left to right maxima is $\binom{n-1}{k-1}$.

Corollary For all n > 0, we have

$$|F_n(321, 2143)| = 2^{n-1}.$$

Open Problem

Find a constructive bijection between $F_n(321, 1423)$ or $F_n(321, 3124)$ and the set of binary sequences of length n - 1 in which no two consecutive 1s have more than one 0 between them.

Open Problem

Find a constructive bijection between $F_n(321, 1423)$ or $F_n(321, 3124)$ and the set of binary sequences of length n - 1 in which no two consecutive 1s have more than one 0 between them.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Conjecture (Cerbai, Claesson, Ferrari)

 $A_n(201)$ is in bijection with permutations in S_n which are 312-machine sortable.

```
Conjecture (E) For all n \ge 0,
```

 $|F_n(1243, 2134)| = |S_n(123, 3241)|.$

Conjecture (E) For all $n \ge 0$,

$$|F_n(1243, 2134)| = |S_n(123, 3241)|.$$

Conjecture (E) For all $n \ge 1$,

$$|F_n(1324, 2143)| = (n-1)2^{n-2} + 1.$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The Last Slide

Thank You!

