The Last Small Restricted Symmetric Permutation Enumeration

Eric S. Egge

Carleton College

April 6, 2024

Outline

The central enumeration problem

An unexpected connection leading to a potential refinement of the problem

4 An approach via simple permutations

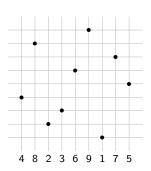
Background

focus on classical pattern avoidance

Background

focus on classical pattern avoidance

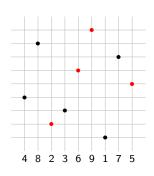
observation: the dihedral group action on permutation respects pattern containment/avoidance



Background

focus on classical pattern avoidance

observation: the dihedral group action on permutation respects pattern containment/avoidance



 π contains σ if and only if $\pi^{\mathbf{g}}$ contains $\sigma^{\mathbf{g}}$

```
Given a subgroup H, a positive integer n, and a set R=\{\sigma_1,\ldots,\sigma_k\} of forbidden patterns, how many permutations
```

```
Given a subgroup H, a positive integer n, and a set R=\{\sigma_1,\ldots,\sigma_k\} of forbidden patterns, how many permutations
```

• have length n,

```
Given a subgroup H, a positive integer n, and a set R=\{\sigma_1,\ldots,\sigma_k\} of forbidden patterns, how many permutations
```

- have length n,
- avoid every pattern in R, and

```
Given a subgroup H, a positive integer n, and a set R=\{\sigma_1,\ldots,\sigma_k\} of forbidden patterns, how many permutations
```

- have length n,
- avoid every pattern in R, and
- are invariant under every element of H?

```
Given a subgroup H, a positive integer n, and a set R=\{\sigma_1,\ldots,\sigma_k\} of forbidden patterns, how many permutations
```

- have length n,
- avoid every pattern in R, and
- are invariant under every element of H?

Notation: $Av_n^H(\sigma_1, \ldots, \sigma_k)$

$$|Av_{2n}^{rc}(132)| = |Av_{2n+1}^{rc}(132)| = 2^n$$

$$|Av_{2n}^{rc}(132)| = |Av_{2n+1}^{rc}(132)| = 2^n$$

$$|Av_{2n}^{rc}(123)| = {2n \choose n}$$
 $|Av_{2n+1}^{rc}(123)| = C_n$

$$|Av_{2n}^{rc}(132)| = |Av_{2n+1}^{rc}(132)| = 2^n$$

$$|Av_{2n}^{rc}(123)| = {2n \choose n}$$
 $|Av_{2n+1}^{rc}(123)| = C_n$

$$|Av_{2n}^{rc,i}(123)| = 2^n$$
 $|Av_{2n+1}^{rc,i}(123)| = \binom{n}{\lfloor \frac{n}{2} \rfloor}$

$$|Av_{2n}^{rc}(132)| = |Av_{2n+1}^{rc}(132)| = 2^n$$

$$|Av_{2n}^{rc}(123)| = {2n \choose n}$$
 $|Av_{2n+1}^{rc}(123)| = C_n$

$$|Av_{2n}^{rc,i}(123)| = 2^n$$
 $|Av_{2n+1}^{rc,i}(123)| = \binom{n}{\lfloor \frac{n}{2} \rfloor}$

$$|Av_{4n}^{90}(1324)| = (n+1)2^{n-1}$$

The Last Small Enumeration

 $|Av_n^H(\sigma_1,\ldots,\sigma_k)|$ is known for all H and all n,

The Last Small Enumeration

$$|Av_n^H(\sigma_1,\ldots,\sigma_k)|$$
 is known for all H and all n , as long as $|\sigma_j| \leq 4$,

The Last Small Enumeration

$$|Av_n^H(\sigma_1,\dots,\sigma_k)|$$
 is known for all H and all n , as long as $|\sigma_j| \leq 4$,

except for

$$|Av_n^{90}(2413)| = |Av_n^{90}(3142)|.$$

Exercises

$$|Av_{4n+2}^{90}(2413)| = |Av_{4n+3}^{90}(2413)| = 0$$

Exercises

$$|Av_{4n+2}^{90}(2413)| = |Av_{4n+3}^{90}(2413)| = 0$$

$$|Av_{4n}^{90}(2413)| = |Av_{4n+1}^{90}(2413)|$$

n				3			6	7
$Av_{4n}^{90}(2413)$	1	1	3	13	67	381	2307	14589

n	0	1	2	3	4	5	6	7
$ Av_{4n}^{90}(2413) $	1	1	3	13	67	381	2307	14589

this is sequence A064062 in the OEIS.

this is sequence A064062 in the OEIS.

Conjecture (E,2007)

$$|Av_{4n}^{90}(2413)| = d_{n-1}$$

where

$$d_0 = 1$$
 $d_n = d_{n-1} + \sum_{k=1}^n 2^k C_{k-1} d_{n-k}$

Conjecture (E,2007)

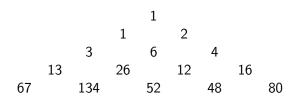
$$|Av_{4n}^{90}(2413)| = d_{n-1}$$

where

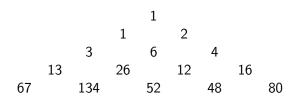
$$d_0 = 1$$
 $d_n = d_{n-1} + \sum_{k=1}^n 2^k C_{k-1} d_{n-k}$

$$1 + \sum_{n=1}^{\infty} d_{n-1} x^n = \frac{4}{3 + \sqrt{1 - 8x}} = \frac{1}{1 - xC(2x)}$$

Terms in the Recurrence



Terms in the Recurrence



Question

What statistic on $Av_{4n}^{90}(2413)$ has this distribution?

number of lattice paths from (0,0) to (n-1,n-1) which

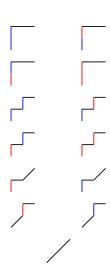
 consist of North (0,1), East (1,0), and Diagonal (1,1) steps,

- consist of North (0,1), East (1,0), and Diagonal (1,1) steps,
- do not pass below y = x,

- consist of North (0,1), East (1,0), and Diagonal (1,1) steps,
- do not pass below y = x,
- only have Diagonal steps on y = x, and

- consist of North (0,1), East (1,0), and Diagonal (1,1) steps,
- do not pass below y = x,
- only have Diagonal steps on y = x, and
- have each North step colored red or blue.

- consist of North (0,1), East (1,0), and Diagonal (1,1) steps,
- do not pass below y = x,
- only have Diagonal steps on y = x, and
- have each North step colored red or blue.



Dumont permutations of the first kind of length 2*n* which avoid 2413 and 3142.

Dumont permutations of the first kind of length 2*n* which avoid 2413 and 3142.

In Dumont permutations of the first kind,

- each even entry is followed by a smaller number and
- each odd entry is followed by a larger number or ends the permutation.

Dumont permutations of the first kind of length 2n which avoid 2413 and 3142.	214365 215643 216435 342165
	356421
	421365
In Dumont permutations of the first kind,	435621
in Dumont permutations of the first kind,	562143
 each even entry is followed by a smaller 	563421
number and	564213
 each odd entry is followed by a larger 	621435
number or ends the permutation.	642135
·	634215

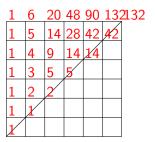
Part 2

An unexpected connection

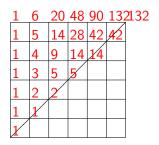
leading to

a potential refinement of the problem

Ballot Numbers



Ballot Numbers



 $b_{j,k}$ is the number of Catalan paths from (0,0) to (j,k)

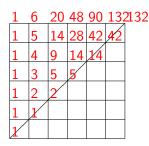
Ballot Numbers

1	6	20	48	90	132	2132
1	5	14	28	42	4 2	
1	4	9	14	14		
1	3	5	5			
1	2	2				
1	1					
1						

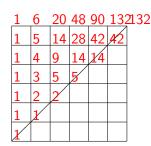
 $b_{j,k}$ is the number of Catalan paths from (0,0) to (j,k)

What are the generating functions for the columns?

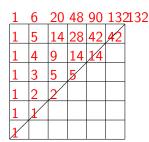
$$G_m(x) = \sum_{k=m}^{\infty} b_{m,k} x^{k-m}$$



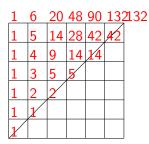
$$G_m(x) = \sum_{k=m}^{\infty} b_{m,k} x^{k-m}$$
$$G_0(x) = \frac{1}{1-x}$$



$$G_m(x) = \sum_{k=m}^{\infty} b_{m,k} x^{k-m}$$
 $G_0(x) = \frac{1}{1-x}$
 $G_1(x) = \frac{1}{(1-x)^2}$



$$G_2(x) = \frac{2-x}{(1-x)^3}$$



$$G_2(x) = \frac{2-x}{(1-x)^3}$$

$$G_3(x) = \frac{5 - 6x + 2x^2}{(1 - x)^4}$$

$$G_4(x) = \frac{14 - 28x + 20x^2 - 5x^3}{(1 - x)^5}$$

$$G_5(x) = \frac{42 - 120x + 135x^2 - 70x^3 + 14x^4}{(1 - x)^6}$$

1	6	20	48	90	132	2132
1	5	14	28	42	4 2	
1	4	9	14	14		
1	3	5	5			
1	2	2				
1	1					
1						

$$G_m(x) = \frac{p_m(x)}{(1-x)^{m+1}}$$

for a polynomial p_m of degree m-1.

$$G_m(x) = \frac{p_m(x)}{(1-x)^{m+1}}$$
 for a polynomial p_m of degree $m-1$.

The coefficients of p_m are integers which alternate in sign.

$$G_m(x) = \frac{p_m(x)}{(1-x)^{m+1}}$$
 for a polynomial p_m of degree $m-1$.

The coefficients of p_m are integers which alternate in sign.

k	0	1	2	3	4	5	6	7
$p_m(-1)$	1	1	3	13	67	381	2307	14589

$$G_m(x) = \frac{p_m(x)}{(1-x)^{m+1}}$$
 for a polynomial p_m of degree $m-1$.

The coefficients of p_m are integers which alternate in sign.

The sum of the absolute values of the coefficients of p_m is

$$p_m(-1)=d_{m-1}.$$

$$G_m(x) = \frac{p_m(x)}{(1-x)^{m+1}}$$
 for a polynomial p_m of degree $m-1$.

The coefficients of p_m are integers which alternate in sign.

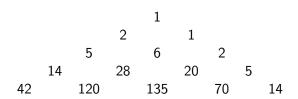
The sum of the absolute values of the coefficients of p_m is

$$p_m(-1)=d_{m-1}.$$

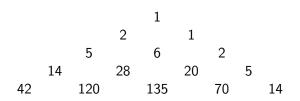
Theorem (E)

$$p_m(x) = \sum_{j=0}^{m-1} (-1)^j \frac{1}{m} \binom{2m}{m-j-1} \binom{m+j-1}{j} x^j$$

The Borel Triangle



The Borel Triangle



Question

What statistic on $Av_{4n}^{90}(2413)$ has this distribution?

Part 3

An approach via simple permutations

Inflation

For any $\pi \in Av_{4n}^{90}$ and any nonempty permutations $\sigma_1, \ldots, \sigma_n$,

$$\pi[\sigma_1,\ldots,\sigma_n]$$

is the permutation obtained by

replacing the entries of π

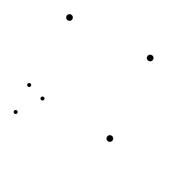
with $\sigma_1, \ldots, \sigma_n$ and their rotations.

Inflation Example: 2413[132]

•

Replace left dot with 132

Inflation Example: 2413[132]



Replace left dot with 132

Inflation Example: 2413[132]

Replace images of left dot with images of 132

Definition

We say $\pi \in Av_{4n}^{90}$ is *simple* whenever it is not a nontrivial inflation.

Definition

We say $\pi \in Av_{4n}^{90}$ is simple whenever it is not a nontrivial inflation.

Idea: if only finitely many permutations in $Av^{90}(2413)$ are simple then the generating function for $|Av_{4n}^{90}(2413)|$ satisfies a polynomial relation determined by the lengths of the simple permutations.

Definition

We say $\pi \in Av_{4n}^{90}$ is *simple* whenever it is not a nontrivial inflation.

Idea: if only finitely many permutations in $Av^{90}(2413)$ are simple then the generating function for $|Av^{90}_{4n}(2413)|$ satisfies a polynomial relation determined by the lengths of the simple permutations.

n	1	2	3	4	5	6	7	8
# simples in $Av_{4n}^{90}(2413)$	1	1	3	10	38	154	654	2871

Conjecture (E)

The number of simple permutations in $Av_{4n}^{90}(2413)$ is the number of dissections of a convex (n+2)-gon into triangles and quadrilaterals by nonintersecting diagonals (A001002).

Conjecture (E)

The number of simple permutations in $Av_{4n}^{90}(2413)$ is the number of dissections of a convex (n + 2)-gon into triangles and quadrilaterals by nonintersecting diagonals (A001002).

Theorem (E)

This conjecture implies our conjectured enumeration of $Av_{4n}^{90}(2413)$.

Inspirational Quotation?

Inspirational Quotation?

Every problem that you don't know how to solve contains a smaller, easier problem

paraphrase of a quotation attributed to Pólya by Conway

Inspirational Quotation?

Every problem that you don't know how to solve contains a smaller, easier problem that you also don't know how to solve; find it.

paraphrase of a quotation attributed to Pólya by Conway

The End

Thank You!