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Abstract

In 1992 Elkies, Kuperberg, Larsen, and Propp introduced a bijection between domino tilings
of Aztec diamonds and certain pairs of alternating-sign matrices whose sizes differ by one. In
this paper we first study those smaller permutations which, when viewed as matrices, are paired
with the matrices for doubly alternating Baxter permutations. We call these permutations snow
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leopard permutations, and we use a recursive decomposition to show they are counted by the
Catalan numbers. This decomposition induces a natural map from Catalan paths to snow leop-
ard permutations; we give a simple combinatorial description of the inverse of this map. Finally,
we also give a set of transpositions which generates these permutations.

Keywords: Domino tiling, Aztec diamond, Baxter permutation, alternating permutation, alternating-
sign matrix, Catalan number.

1 Introduction and Background

An Aztec diamond of order n is a two dimensional array of unit squares with 2i squares in rows
i ≤ n and 2(2n − i + 1) squares in rows n < i ≤ 2n, in which the squares are centered in each
row. In Figure 1 we have the Aztec diamond of order 3. We will be interested in the vertices of an

Figure 1: The Aztec diamond of order 3.

Aztec diamond, which we prefer to arrange in rows and columns, so we will orient all of our Aztec
diamonds as in Figure 2. Aztec diamonds can be tiled using 2 × 1 domino rectangles, which is to
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Figure 2: The Aztec diamond of order 3, reoriented.

say they can be completely covered by disjoint dominoes whose union is the entire diamond. We
call a tiling of an Aztec diamond with dominoes a TOAD for short.

In [12], Elkies, Kuperberg, Larsen, and Propp describe how to construct, for each TOAD T
of order n, a pair of matrices SASM(T ) and LASM(T ) of sizes n × n and (n + 1) × (n + 1),
respectively. Each of these matrices is an alternating-sign matrix (ASM), which is a matrix with
entries in {0, 1,−1} whose nonzero entries in each row and in each column alternate in sign and
sum to 1. (For an introduction to ASMs and a variety of related combinatorial objects, see [17],
[6], and [16].) To carry out this construction, first note that in Figure 3 the vertices that compose
the tiled Aztec diamond fall naturally into two matrices: the red vertices form an (n+ 1)× (n+ 1)
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Figure 3: A domino tiling of the Aztec diamond of order 3.

matrix while the blue vertices form an n× n matrix. We construct LASM(T ) on the red vertices
by labeling each vertex of degree 4 with a 1, labeling each vertex of degree 3 with a 0, and labeling
each vertex of degree 2 with a −1. We construct SASM(T ) on the blue vertices in the same way,
except the degree 4 and degree 2 rules are reversed. Note that the TOAD T in Figure 3 has

LASM(T ) =


0 0 0 1
1 0 0 0
0 0 1 0
0 1 0 0


and

SASM(T ) =

0 0 1
1 0 0
0 1 0

 .
Following [12] and [7], we say an (n+ 1)× (n+ 1) ASM A and an n× n ASM B are compatible

whenever there is a TOAD T such that A = LASM(T ) and B = SASM(T ). In [12], Elkies,
Kuperberg, Larsen, and Propp show that an (n+ 1)× (n+ 1) ASM with k entries equal to −1 is
compatible with 2k n× n ASMs, while an n× n ASM with j entries equal to 1 is compatible with
2j (n+ 1)× (n+ 1) ASMs. In general, then, the compatibility relation is not one-to-one. However,
each (n+ 1)× (n+ 1) ASM with no −1 entries (that is, each (n+ 1)× (n+ 1) permutation matrix)
is compatible with exactly one n× n ASM. In this case Canary [7] gives an algorithm to construct
the unique smaller ASM compatible with a given larger permutation matrix. (Asinowski [2] gives a
different formulation of the same algorithm, in which he first reconstructs the underlying TOAD.)
To implement Canary’s algorithm for an (n+ 1)× (n+ 1) permutation matrix A, first label the red
vertices in a diagram for an Aztec diamond of the appropriate size with the entries of A. For each
blue vertex, if the two red vertices immediately to the left, and all of the red vertices left of those,
are labeled with 0, then label the blue vertex 0. Now repeat this process in each of the other three
directions (up, right, and down). Canary shows that each row and column of blue vertices will now
contain an odd number of unlabeled vertices, and there is a unique way to label these vertices with
1s and −1s to create an ASM.
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Canary proves that the n×n ASM which is compatible with a given (n+1)×(n+1) permutation
matrix A will also be a permutation matrix if and only if A is the matrix of a Baxter permutation. To
understand the definition of a Baxter permutation, first note that we can interpret each permutation
matrix A as the permutation π in one-line notation for which Aij = δjπ(i). That is, the 1 in the first
row of A is in position π(1), the 1 in the second row is in position π(2), and in general the 1 in the
jth row is in position π(j). For example, if T is the TOAD in Figure 3, then the permutation for
LASM(T ) is 4132 and the permutation for SASM(T ) is 312. We will often identify a permutation
matrix with its corresponding permutation in one line notation. With this convention, a Baxter
permutation is a permutation that avoids 2− 41− 3 and 3− 14− 2. In other words, π is a Baxter
permutation whenever there are no indices i < j < j+1 < k such that π(j+1) < π(i) < π(k) < π(j)
(for 2− 41− 3) or π(j) < π(k) < π(i) < π(j + 1) (for 3− 14− 2). For example, 174962835 is not
Baxter because the subsequence 4625 is an instance of 2− 41− 3. In contrast, 879164325 is Baxter
because it contains no instances of 2− 41− 3 or 3− 14− 2. Note that the compatibility relation is
still not one-to-one when we restrict it to Baxter permutations. For example, 12 is compatible with
the Baxter permutations 123, 132, and 213. On the other hand, as the authors in [3] suggest, for
every permutation π of length n which is compatible with a Baxter permutation of length n + 1,
the number of Baxter permutations of length n+ 1 compatible with π appears to be a product of
Fibonacci numbers.

Baxter permutations first arose in connection with the question of whether two commuting
continuous functions from the closed interval [0, 1] to itself must have a common fixed point [4, 5].
Since their introduction they have been studied by many authors; some relevant references are [8],
[14], [9], [10], [13], [11], [15], [1], and [3].

Our work involves a particular class of Baxter permutations, which are known as doubly alter-
nating Baxter permutations. We call a permutation π alternating whenever π(i) < π(i+ 1) if i is
odd and π(i) > π(i+1) if i is even. That is, π is alternating whenever it begins with an ascent, and
its ascents and descents alternate. A doubly alternating permutation is an alternating permutation
whose inverse is also alternating, and we call permutations that are both doubly alternating and
Baxter doubly alternating Baxter permutations (DABPs). Guibert and Linusson show in [13] that
the Catalan number Cn = 1

n+1

(
2n
n

)
counts both the DABPs of length 2n and the DABPs of length

2n+ 1. The Catalan numbers are known to count many other combinatorial objects (see [19, Ex-
ercise 6.19] and [18]), including lattice paths from (0, 0) to (n, n) using only north (0, 1) and east
(1, 0) steps which do not pass below the line y = x; we call these paths Catalan paths. In addition
to the explicit definition of Cn in terms of binomial coefficients, the Catalan numbers also satisfy
the recurrence relation Cn =

∑n
j=1Cj−1Cn−j for n ≥ 0, with initial condition C0 = 1.

In this paper, we introduce the snow leopard permutations (SLPs), which are the permutations
that are compatible with the doubly alternating Baxter permutations. More formally, we write Sn
to denote the set of permutations of length n, and we make the following definition.

Definition 1.1. We say a permutation π ∈ Sn is a snow leopard permutation whenever there is a
TOAD T of order n such that LASM(T ) is a DABP and SASM(T ) = π.

In Section 2, we characterize these permutations recursively, and we use this recursive characteri-
zation to show that in this case the compatibility relation is one-to-one. This implies that the snow
leopard permutations of length 2n are also counted by Cn, as are the snow leopard permutations
of length 2n + 1. Matching our recursive description of the snow leopard permutations with the
first-return decomposition of a Catalan path gives us a recursively defined bijection from Catalan
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paths from (0, 0) to (n, n) to snow leopard permutations of length 2n. In Section 3 we give a
simple combinatorial description of the inverse of this map. Finally, in Section 4 we describe how
to generate all of the snow leopard permutations from the decreasing permutation with a specific
set of transpositions.

2 Recursive Decompositions of DABPs, TOADs, and Snow Leop-
ard Permutations

In this section we describe how to construct snow leopard permutations recursively, and we use our
recursive decomposition to show that there are Cn snow leopard permutations of length 2n, as well
as Cn snow leopard permutations of length 2n+ 1. Our snow leopard permutation decomposition
is induced by similar decompositions of the associated TOADs and DABPs, so we first describe
how to decompose these objects. We begin with a recursive decomposition of a DABP, for which
it will be helpful to use several common operations on permutations.

2.1 Permutation Tools

Throughout we write Sn to denote the set of all permutations of length n, and for any permutation
π we write |π| to denote the length of π. The following four operations on permutations will be
especially useful for us.

Definition 2.1. For any permutation π ∈ Sn, we write πc to denote the complement of π, which
is the permutation in Sn with

πc(j) = n+ 1− π(j)

for all j, 1 ≤ j ≤ n, and we write πr to denote the reverse of π, which is the permutation in Sn
with

πr(j) = π(n+ 1− j)

for all j, 1 ≤ j ≤ n. For any permutations π ∈ Sn and σ ∈ Sk, we write π ⊕ σ to denote the
permutation in Sn+k with

(π ⊕ σ)(j) =

{
π(j) if 1 ≤ j ≤ n
n+ σ(j − n) if n < j ≤ n+ k

for all j, 1 ≤ j ≤ n, and we write π 	 σ to denote the permutation in Sn+k with

(π 	 σ)(j) =

{
k + π(j) if 1 ≤ j ≤ n
σ(j − n) if n < j ≤ n+ k

for all j, 1 ≤ j ≤ n.

Note that on matrices the complement is a reflection over a vertical line, while the reverse is a
reflection over a horizontal line. In addition, one can also show that for any permutations π and
σ we have (π ⊕ σ)−1 = π−1 ⊕ σ−1, (πr)−1 = (π−1)c, and (πc)−1 = (π−1)r. We sometimes write
i to denote the inverse map on Sn; with this notation, our last two equations are equivalent to
i ◦ r = c ◦ i and i ◦ c = r ◦ i, respectively.
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Example 2.2. If π = 32154 and σ = 3124 then πc = 34512, σr = 4213, π ⊕ σ = 321548679, and
π 	 σ = 765983124.

In some situations our permutations will naturally have length 0 or −1. To incorporate these
cases into our results, we use the following notation.

Definition 2.3. We write ∅ to denote the empty permutation, which is the unique permutation of
length 0, and we write a to denote the antipermutation, which is the unique permutation of length
−1. We have ac = ar = a−1 = a, and 1⊕ a = a⊕ 1 = 1	 a = a	 1 = ∅.

As we show next, the set of Baxter permutations is closed under ⊕, 	, taking complements,
and taking the reverse of a permutation.

Lemma 2.4. The following are equivalent for any permutation π.

(i) π is Baxter.

(ii) πc is Baxter.

(iii) πr is Baxter.

(iv) π−1 is Baxter.

Proof. (i)⇒ (ii) If πc contains a subsequence of type 2−41−3, then the corresponding subsequence
of π will have type 3− 14− 2. Similarly, if πc contains a subsequence of type 3− 14− 2 then the
corresponding subsequence of π will have type 2− 41− 3. If π is Baxter then π avoids 2− 41− 3
and 3− 14− 2, so πc avoids 3− 14− 2 and 2− 14− 3, which means πc is Baxter.

(ii) ⇒ (i) This is immediate from (i) ⇒ (ii), since (πc)c = π.
(i) ⇔ (iii) This is similar to the proof of (i) ⇔ (ii).
(i) ⇔ (iv) Since (π−1)−1 = π, it’s sufficient to show that if π contains a subsequence of type

2− 41− 3 or a subsequence of type 3− 14− 2 then π−1 does, as well. With this in mind, suppose
abcd is a subsequence of π of type 2 − 41 − 3 for which d − a is minimal. If d = a + 1 then the
corresponding subsequence in π−1 has type 3− 14− 2. Otherwise, a+ 1 is either to the left of b or
to the right of c, since b and c are adjacent. If a+ 1 is to the left of b, then we can replace a with
a + 1, so d − a was not minimal, which is a contradiction. On the other hand, if a + 1 is to the
right of c then we can replace d with a+ 1, so d− a was not minimal in this case, either.

The proof that if π contains a subsequence of type 3− 14− 2 then π−1 contains a subsequence
of type 2− 41− 3 or a subsequence of type 3− 14− 2 is similar.

Lemma 2.5. The following are equivalent for permutations π and σ.

(i) π and σ are Baxter.

(ii) π ⊕ σ is Baxter.

(iii) π 	 σ is Baxter.

Proof. (i) ⇒ (ii) Suppose to the contrary that π and σ are Baxter permutations but π ⊕ σ is not
Baxter. Call the first |π| entries of π ⊕ σ the front of π ⊕ σ, and call the last |σ| entries the back.
Note that every entry in the front is less than every entry in the back.
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If π ⊕ σ contains a subsequence α of type 2 − 41 − 3, then α cannot be entirely contained in
the front or in the back, since π and σ are Baxter. Therefore α(1) is in the front and α(4) is in
the back. Now α(2) must be in the back, since it is greater than α(4), so α(3) must also be in the
back. But this contradicts the fact that α(1) > α(3).

If π⊕σ contains a subsequence α of type 3− 14− 2, then α cannot be entirely contained in the
front or in the back, since π and σ are Baxter. But this contradicts the fact that α(1) > α(4).

(ii) ⇒ (i) If π or σ contains a subsequence of type 2− 41− 3 or 3− 14− 2 then so does π ⊕ σ,
and the result follows.

(i) ⇔ (iii) This is similar to the proof of (i) ⇔ (ii).

Note that if π is alternating then πc is not alternating in general, and πr is alternating if and
only if π has odd length. Similarly, if π and σ are alternating, then π ⊕ σ is not alternating in
general, while π 	 σ is alternating if and only if π has even length. As a result, the set of DABPs
is not closed under ⊕, 	, complements, or reverses.

2.2 The DABP Decompositions

As we will see, snow leopard permutations inherit their recursive structure from DABPs, so our
first goal is to describe how to decompose DABPs into smaller DABPs. Several of these results are
not new, so we will refer to the work of others, especially [11] and [15], as needed. We begin with
a result of Ouchterlony.

Lemma 2.6. ([15, Lem. 4.1(i)]) If π is a DABP of odd length then π(1) = 1.

Ouchterlony uses Lemma 2.6 to conclude that π is a DABP of length 2n + 1 if and only if
π = 1⊕ (σr)−1 for some DABP σ of length 2n [15, Cor. 4.2(i)], and that this correspondence is a
bijection between the set of DABPs of length 2n+ 1 and the set of DABPs of length 2n. However,
as we show next, more is true.

Proposition 2.7. Suppose f is any of the functions r, c, i ◦ r, and i ◦ c on permutations. For any
nonnegative integer n and any π ∈ S2n+1, π is a DABP if and only if there is a DABP σ ∈ S2n
such that π = 1 ⊕ σf . Moreover, for each f this correspondence is a bijection between the set of
DABPs π of length 2n+ 1 and the set of DABPs σ of length 2n.

Proof. By [15, Cor. 4.2(i)] the result holds for f = i ◦ r. To prove the result for f = c, first note
that σ is a DABP if and only if σ−1 is a DABP by Lemma 2.4. Now the result follows by replacing
σ with σ−1 in [15, Cor. 4.2(i)] and using the fact that i ◦ r ◦ i = c.

The proofs when f = r and f = i ◦ c are similar.

With Proposition 2.7 in mind, we will focus our attention on DABPs of even length. In this case,
Guibert and Linusson [11] and Ouchterlony [15] have found the following DABP decomposition.

Proposition 2.8. ([15, Cor. 4.2(ii)] and [11, proof of Thm. 3]) For any nonnegative integer n and
any permutation π ∈ S2n, π is a DABP if and only if there are DABPs π1 and π2 of even length
such that π = (1⊕ (πr1)−1⊕ 1)	 π2. Moreover, this correspondence is a bijection between the set of
DABPs π of length 2n and the set of ordered pairs (π1, π2) of DABPs of lengths 2k and 2l, where
n = k + l + 1.

As was the case for DABPs of odd length, more is true.
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Proposition 2.9. Suppose f is any of the functions r, c, i ◦ r, and i ◦ c on permutations. For any
nonnegative integer n and any permutation π ∈ S2n, π is a DABP if and only if there are DABPs
π1 and π2 of even length such that π = (1⊕πf1⊕1)	π2. Moreover, for each f this correspondence is
a bijection between the set of DABPs π of length 2n and the set of ordered pairs (π1, π2) of DABPs
of lengths 2k and 2l, where n = k + l + 1.

Proof. This is similar to the proof of Proposition 2.7, using Proposition 2.8.

2.3 The Aztec Diamond Decompositions

It is not difficult to show [2, 7] that each Baxter permutation π of length n+ 1 determines a unique
TOAD T (π) of order n, and that T and LASM are inverse bijections when LASM is restricted
to those TOADS whose LASM is a Baxter permutation. Computing T (π) when π has length 2
or more is routine, but some care is required when π has length 0 or 1. In particular, T (1) is the
TOAD of order 0, which we show in Figure 4. Going a bit smaller still, we write a to denote the

�
�
@
@

Figure 4: The TOAD of order 0.

TOAD T (∅), which has order −1. Since the Aztec diamond of order −1 has no edges at all, we
can’t even draw it, but it will still play a role in our snow leopard decomposition.

The fact that we have the maps T and LASM means our DABP decompositions induce similar
TOAD decompositions. To describe these TOAD decompositions, it’s useful to introduce several
ways of transforming and combining TOADs.

Definition 2.10. For any TOAD T , we write T c to denote the complement of T , which is the
reflection of T over a vertical line, we write T r to denote the reverse of T , which is the reflection
of T over a horizontal line, and we write T−1 to denote the inverse of T , which is the reflection of
T over a diagonal line from upper left to lower right.

As we did for permutations, we sometimes write i to denote the inverse map on TOADs.

Definition 2.11. For any TOADs T1 and T2, we write T1 ⊕ T2 to denote the TOAD we obtain by
identifying the lower right vertex of T1 with the upper left vertex of T2, taking the smallest Aztec
diamond D which contains both T1 and T2, and tiling the part of D outside of T1 and T2 with
dominoes whose long sides are oriented from upper left to lower right. If T1 has order n and T2 has
order k, then T1 ⊕ T2 has order n+ k + 1.

In Figure 5 we see how TOADs T1 (in red) and T2 (in blue) are combined to produce T1 ⊕ T2.
Note that the only way to tile the areas outside of T1 and T2 is to use dominoes whose long sides
are oriented from upper left to lower right, as in the construction of T1 ⊕ T2.

Definition 2.12. For any TOADs T1 and T2, we write T1 	 T2 to denote the TOAD we obtain by
identifying the lower left vertex of T1 with the upper right vertex of T2, taking the smallest Aztec
diamond D which contains both T1 and T2, and tiling the part of D outside of T1 and T2 with
dominoes whose long sides are oriented from upper right to lower left. If T1 has order n and T2 has
order k, then T1 	 T2 has order n+ k + 1.
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Figure 5: The construction of T1 ⊕ T2 from T1 and T2.
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Figure 6: The construction of T1 	 T2 from T1 and T2.

In Figure 6 we see how TOADs T1 (in red) and T2 (in blue) are combined to produce T1 	 T2.
Note that the only way to tile the areas outside of T1 and T2 is to use dominoes whose long sides
are oriented from upper right to lower left, as in the construction of T1 	 T2.

Our next result, which follows immediately from our definitions, justifies our multiple uses of
the notations c, r, −1, ⊕, and 	.

Proposition 2.13. For any Baxter permutations π and σ, the following hold.

(i) T (πc) = T (π)c.

(ii) T (πr) = T (π)r.

(iii) T (π−1) = T (π)−1.

(iv) T (π ⊕ σ) = T (π)⊕ T (σ).
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(v) T (π 	 σ) = T (π)	 T (σ).

We now turn our attention to those TOADs which come from DABPs.

Definition 2.14. We call a TOAD T a doubly alternating Aztec diamond (DAAD) whenever
LASM(T ) is a DABP. Note that a TOAD T is a DAAD if and only if there is a DABP π such
that T (π) = T . Indeed, π = LASM(T ).

1

Figure 7: The DAAD corresponding to the DABP 37564812 and its com-
patible SLP 3654721.

In Figure 7 we have a DAAD with its DABP and its corresponding snow leopard permutation.
We saw in Proposition 2.7 that it’s easy to construct DABPs of odd length from DABPs of

even length. As we see next, this means it’s easy to construct DAADs of even order from DAADs
of odd order.

Proposition 2.15. Suppose f is any of the functions r, c, i ◦ r, and i ◦ c on DAADs. For any
nonnegative integer n and any TOAD T of order 2n, T is a DAAD if and only if there is a DAAD
D of order 2n−1 such that T = T (1)⊕Df . Moreover, for each f this correspondence is a bijection
between the set of DAADs of order 2n and the set of DAADs of order 2n− 1.

Proof. (⇒) Since T is a DAAD of order 2n, there is a DABP π of length 2n + 1 with T (π) = T .
By Proposition 2.7, there is a DABP σ of length 2n such that π = 1 ⊕ σf . If we apply T to our
expression for π and use Proposition 2.13 to simplify the result, we find T = T (1) ⊕ T (σ)f . Now
the result follows, since D = T (σ) is a DAAD of order 2n− 1.

(⇐) Since D is a DAAD of order 2n− 1, there is a DABP σ of length 2n such that T (σ) = D.
By Proposition 2.7, we have T (1⊕ σf ) = T , so T is a DAAD.

The fact that this correspondence is a bijection follows from the last statement of Proposition
2.7 and the fact that T is a bijection.

Proposition 2.15 says that we can understand all DAADs if we understand DAADs of odd order.
With this in mind, we now describe how to decompose a DAAD of odd order into a combination
of two smaller DAADs of odd order.
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Theorem 2.16. Suppose f is any of the functions r, c, i ◦ r, or i ◦ c on TOADs. For any TOAD
T of odd order, T is a DAAD if and only if there are DAADs T1 and T2 of odd order such that
T = (T (1)⊕ T f1 ⊕ T (1))	 T2. Moreover, for each f this correspondence is a bijection between the
set of DAADs T of order 2n − 1 and the set of ordered pairs (T1, T2) of DAADs of orders 2k − 1
and 2l − 1, where n = k + l + 1.

Proof. (⇒) Since T is a DAAD or order 2n− 1, we know that π = LASM(T ) is a DABP of length
2n with T = T (π). By Proposition 2.9 there are DABPs π1 and π2 of lengths 2k and 2l, respectively,

such that π = (1⊕ πf1 ⊕ 1)	 π2 and n = k + l + 1. If we apply T to our expression for π and use
Proposition 2.13 to simplify the result, we find T = T (π) = (T (1)⊕T (π1)

f ⊕T (1))	T (π2). Now
the result follows, since T1 = T (π1) and T2 = T (π2) are DAADs by definition.

(⇐) Since T1 and T2 are DAADs, we know that π1 = LASM(T1) and π2 = LASM(T2)
are DABPs of lengths k and l respectively, such that T (π1) = T1 and T (π2) = T2. Moreover,

n = k + l+ 1. By Proposition 2.9, the permutation (1⊕ πf1 ⊕ 1)	 π2 is also a DABP, so its image

under T is a DAAD. But if we apply T to (1⊕πf1 ⊕1)	π2 and use Proposition 2.13 to simplify the

result, we find that T ((1⊕πf1⊕1)	π2) = (T (1)⊕T f1 ⊕T (1))	T2. Therefore (T (1)⊕T f1 ⊕T (1))	T2
is a DAAD.

The fact that this correspondence is a bijection follows from the last statement of Proposition
2.9 and the fact that T is a bijection.

When we consider how our DAAD decomposition gives us a decomposition of the associated
snow leopard permutation, we will be especially interested in pairs of dominoes that share a long
side. With this in mind, we sometimes think of the process of building T (1) ⊕ T ⊕ T (1) from a
TOAD T in terms of adding a “hat” and pair of “shoes” to T . In Figure 8 we add a hat (in blue)
and shoes (in Wizard of Oz ruby red) to T (1324)c.

When we construct (T (1)⊕ T1 ⊕ T (1))	 T2 from T (1)⊕ T1 ⊕ T (1) and T2, we add one more
pair of dominoes which are adjacent along long sides; we call this pair the “connector”. In Figure
9d we outline the connector in red.

2.4 The Snow Leopard Permutation Decompositions

In the Introduction we described the function SASM , which maps DAADs of order n to snow
leopard permutations of length n. In this section we use SASM and our DAAD decomposition
to obtain our snow leopard permutation decomposition. To make this easier, we first describe a
simple relationship between certain domino configurations in a DAAD T and the 1s in the matrix
for SASM(T ).

Definition 2.17. A block in a TOAD T is a pair of two dominoes in T which are adjacent along
a long edge, forming a 2-by-2 box.

The DAAD shown in Figure 7 contains 7 blocks.

Lemma 2.18. The vertices in a DAAD T which correspond to the 1s in SASM(T ) are exactly
those vertices in the center of a block. As a result, the blocks of a DAAD are in bijection with the
1s in its SASM.
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1

(a) T (1324)

1

(b) T (1324)c

1

(c) Making room for the hat and shoes.

1

(d) A stylish blue hat and red shoes.

Figure 8: An illustration of the computation of T (1) ⊕ T (1324)c ⊕ T (1),
also known as the “hat and shoes” process.

Proof. Let T be a DAAD of order n that contains a block B. By Canary’s algorithm, this point
may correspond to a 1 in SASM(T ) or a −1 in LASM(T ). However, because LASM(T ) is a
permutation, it cannot contain a −1. Thus, a block must correspond to a 1 in SASM(T ).

Conversely, a 1 in SASM(T ) must label a vertex of degree 2, which creates a block in T .

Next we describe how the map SASM interacts with our operations on TOADs.

Proposition 2.19. For any TOADs T1 and T2, the following hold.

(i) SASM(T c1 ) = SASM(T1)
c.

(ii) SASM(T r1 ) = SASM(T1)
r.

(iii) SASM(T−11 ) = SASM(T1)
−1.

(iv) SASM(T1 ⊕ T2) = SASM(T1)⊕ 1⊕ SASM(T2).

(v) SASM(T1 	 T2) = SASM(T1)	 1	 SASM(T2).

Proof. (i), (ii), (iii) These are clear from Lemma 2.18 and our construction of SASM , since each
of c, r, and i is a reflection over a particular line.

(iv) First observe that if T1 (resp. T2) is the TOAD of order −1 then T1 ⊕ T2 is equal to T1
(resp. T2). But in this case SASM(T1) (resp. SASM(T2)) is the antipermutation a, and the result
holds.

12



1

(a) T1
1

(b) T2

1

(c) T (1)⊕T c
1 ⊕T (1) and T2 in a

larger diamond.

1

(d) Putting the rest of the domi-
noes in, with the connector in
red.

Figure 9: An illustration of the composition of DAADs T1 and T2, using
the complement map. We outline the connector in red.

Now suppose T1 and T2 have nonnegative orders. Then in the construction of T1⊕T2 we create
one block which is not in T1 or T2, where the lower right edge of T1 meets the upper left edge of
T2. Now the result follows from Lemma 2.18.

(v) This is similar to the proof of (iv).

We can now describe our snow leopard permutation decomposition.

Theorem 2.20. Suppose f is any of the functions r, c, i ◦ r, or i ◦ c on permutations. For any
permutation π of odd length, π is a snow leopard permutation if and only if there are snow leopard
permutations π1 and π2 of odd length such that π = (1⊕πf1 ⊕1)	1	π2. Moreover, for each f this
correspondence is a bijection between the set of snow leopard permutations π of length 2n − 1 and
the set of ordered pairs (π1, π2) of snow leopard permutations of lengths 2k − 1 and 2l − 1, where
n = k + l + 1.

Proof. (⇒) If π is a snow leopard permutation of length 2n−1, then by definition there is a DAAD
T of order 2n − 1 such that SASM(T ) = π. By Theorem 2.16, there are DAADs T1 and T2 of

orders 2k − 1 and 2l − 1, where n = k + l + 1, such that T = (T (1) ⊕ T f1 ⊕ T (1)) 	 T2. Using

13



Proposition 2.19 we find

π = SASM(T )

= SASM
(

(T (1)⊕ T f1 ⊕ T (1))	 T2
)

=
(
SASM(T (1))⊕ 1⊕ SASM(T1)

f ⊕ 1⊕ SASM(T (1))
)
	 1	 SASM(T2)

= (1⊕ SASM(T1)
f ⊕ 1)	 1	 SASM(T2),

where the last step follows from the fact that SASM(T (1)) = ∅. Now the result follows, since
π1 = SASM(T1) is a snow leopard permutation of length 2k − 1 and π2 = SASM(T2) is snow
leopard permutation of length 2l − 1, where n = k + l + 1.

(⇐) If π1 and π2 are snow leopard permutations of lengths 2k − 1 and 2l − 1, respectively,
where n = k + l + 1, then by definition there are DAADs T1 and T2 of orders 2k − 1 and 2l − 1,
respectively, such that π1 = SASM(T1) and π2 = SASM(T2). By Theorem 2.16 we know that

(T (1) ⊕ T f1 ⊕ T (1)) 	 T2 is a DAAD of order 2n − 1. But if we apply SASM to this DAAD and

use Proposition 2.19 as in the proof of the other direction, we find (1⊕ πf1 ⊕ 1)	 1	 π2 is a snow
leopard permutation of length 2n− 1.

To see that the map (π1, π2) 7→ (1 ⊕ πr1 ⊕ 1) 	 1 	 π2 is a bijection, first note that it is
onto the set of snow leopard permutations by the first part of the theorem. To see it is one-to-
one, suppose there are ordered pairs (π1, π2) and (σ1, σ2) of snow leopard permutations such that

(1⊕πf1 ⊕ 1)	 1	π2 = (1⊕σf1 ⊕ 1)	 1	σ2, and let π denote this common permutation. Then the

hat (the second 1 in 1⊕ πf1 ⊕ 1 and 1⊕ σf1 ⊕ 1) corresponds to the largest entry in π. Therefore πf1
is a shift of the entries between the first entry of π and the largest entry of π, as is σf1 , so πf1 = σf1 .
But f is invertible, so π1 = σ1. Similarly, π2 and σ2 are both equal to the sequence of entries of π
to the right of the largest entry of π, so π2 = σ2.

It’s worth noting that in small cases the permutation (1⊕πf1⊕1)	1	π2 is not as long as it looks.
For example, the antipermutation a of length −1 is a snow leopard permutation corresponding to
the TOAD of order −1. As a result, the snow leopard permutation 1 corresponds to the ordered
pair (a, a), since 1 = (1 ⊕ a ⊕ 1) 	 1 	 a. Similarly, for any snow leopard permutation π of odd
length, 1 ⊕ π ⊕ 1 and 1 	 1 	 π are also snow leopard permutations of odd length, corresponding
to the ordered pairs (π, a) and (a, π), respectively.

We can now use Theorem 2.20 to count the snow leopard permutations of each length.

Corollary 2.21. For each n ≥ 0, the number of snow leopard permutations of length 2n− 1 is Cn.

Proof. For each n ≥ 0, let an be the number of snow leopard permutations of length 2n− 1. There
is just one snow leopard permutation of length −1, so a0 = 1 = C0 and the result holds for n = 0.
Now fix n ≥ 1 and suppose by induction that aj = Cj for all j, 0 ≤ j ≤ n − 1. By Theorem 2.20

14



and our induction hypothesis we have

an =
n−1∑
j=0

ajan−1−j

=
n−1∑
j=0

CjCn−1−j

=

n∑
j=1

Cj−1Cn−j

= Cn,

as desired.

We can also use Theorem 2.20 and Proposition 2.7 to count the snow leopard permutations of
even length.

Proposition 2.22. Suppose f is any of the functions r, c, i ◦ r, or i ◦ c on permutations. Then
for any n ≥ 0, the map π 7→ 1⊕ πf is a bijection between the set of snow leopard permutations of
length 2n− 1 and the set of snow leopard permutations of length 2n.

Proof. We first show that π is a snow leopard permutation of length 2n− 1 if and only if 1⊕ πf is
a snow leopard permutation of length 2n.

If π is a snow leopard permutation of length 2n − 1, then by definition there is a DAAD T of
order 2n− 1 such that SASM(T ) = π. By Proposition 2.15, the TOAD T (1)⊕Df is a DAAD of
order 2n. Now by Proposition 2.19 we have SASM(T (1)⊕Df ) = 1⊕ πf , since SASM(T (1)) = ∅.
Therefore 1⊕ πf is a snow leopard permutation of length 2n.

Conversely, if 1 ⊕ πf is a snow leopard permutation of length 2n, then by definition there is a
DAAD T of order 2n such that SASM(T ) = 1⊕πf . Now by Proposition 2.15, there is a DAAD D of
order 2n−1 such that T = T (1)⊕Df , and by Proposition 2.19 we have SASM(T ) = 1⊕SASM(D)f .
Since πf can be obtained from 1⊕ πf and f is invertible, we must have π = SASM(D), so π is a
snow leopard permutation.

Finally, it is routine to check that the map π 7→ 1 ⊕ πf is a bijection between S2n−1 and the
set of permutations in S2n whose first entry is 1, so the restriction of this map to the set of snow
leopard permutations of length 2n− 1 must also be a bijection.

Corollary 2.23. For each n ≥ 0, the compatibility correspondence is a bijection between the set of
DABPs of length n and the set of snow leopard permutations of length n− 1.

Proof. By definition the compatibility correspondence maps DABPs of length n onto snow leopard
permutations of length n − 1. Since each of these sets has the same number of elements, this
correspondence must be a bijection.

Theorem 2.20 also gives us useful structural information about snow leopard permutations.
For instance, we have the following result concerning the parities of the entries of a snow leopard
permutation.
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Corollary 2.24. Snow leopard permutations preserve parity. That is, if π is a snow leopard
permutation of length n, then for all j with 1 ≤ j ≤ n, the entry π(j) is even if and only if j
is even.

Proof. We first consider the case in which n is odd.
The result is vacuously true for π = a, and trivial for π = 1, so suppose by induction that n ≥ 0

is odd and the result holds for all snow leopard permutations of odd length less than n.
In general, if σ is a permutation of odd length which preserves parity, then σc, 1 ⊕ σ, and

1⊕ σ⊕ 1 also preserve parity. Similarly, if σ is a parity-preserving permutation of odd length then
1 	 σ is a parity-reversing permutation. Finally, if σ1 is a parity-preserving permutation of odd
length and σ2 is a parity-reversing permutation of even length, then σ1 	 σ2 is a parity-preserving
permutation.

By Theorem 2.20, if π is a snow leopard permutation of odd length then there are snow leopard
permutations π1 and π2 of odd length such that π = (1⊕ πc1 ⊕ 1)	 1	 π2. By induction and our
observations above, 1 ⊕ πc1 ⊕ 1 is a parity-preserving permutation of odd length and 1 	 π2 is a
parity-reversing permutation of even length, so π preserves parity.

Now suppose π is a snow leopard permutation of even length. By Proposition 2.22, we have
π = 1 ⊕ σc for some snow leopard permutation σ of odd length. By our observations above, σc

preserves parity, so π = 1⊕ σc also preserves parity.

Theorem 2.20 also gives us pattern-avoidance properties of snow leopard permutations. In
particular, we can use it to show that snow leopard permutations are anti-Baxter, which means
they avoid 2− 14− 3 and 3− 41− 2.

Corollary 2.25. If π is a snow leopard permutation then π avoids 2− 14− 3 and 3− 14− 2.

Proof. We first consider the case in which |π| = n is odd.
The result is clear for π = a, π = 1, π = 123, and π = 321, so suppose by induction that n ≥ 0 is

odd and the result holds for all snow leopard permutations of odd length less than n. By Theorem
2.20, if π is a snow leopard permutation of odd length then there are snow leopard permutations
π1 and π2 of odd length such that π = (1 ⊕ πc1 ⊕ 1) 	 1	 π2. For convenience, we call the entries
of π corresponding to 1⊕ πc1 ⊕ 1 the front of π, and we call the remaining entries of π the back of
π. Note that every entry in the front of π is greater than every entry in the back of π.

Now suppose π contains a subsequence abcd of type 2− 14− 3. If a is in the front of π, then d
is also in the front of π, since d > a. Moreover, a cannot be the first entry of the front of π and d
cannot be the last, since the first and last entries are the smallest and largest entries of the front of
π, and we have b < a and c > d. Therefore our subsequence is entirely contained in the entries of π
corresponding to πc1, and the corresponding subsequence of π1 has type 3−41−2. This contradicts
our induction hypothesis.

On the other hand, if a is not in the front of π then every entry of our subsequence is in the
back of π. The first entry of the back of π is the largest, but c > a, so in fact our subsequence is
contained in π2, which contradicts our induction hypothesis.

The proof that π has no subsequence of type 3− 41− 2 is similar.
Now suppose π is a snow leopard permutation of even length. By Proposition 2.22, we have

π = 1 ⊕ σc for some snow leopard permutation σ of odd length. Arguing as above, if π has a
subsequence of type 2 − 14 − 3 (resp. 3 − 41 − 2) then σ has a subsequence of type 3 − 41 − 2
(resp. 2− 14− 3), so the result follows by induction.
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One can show that this result holds more generally: if π is a Baxter permutation of length n+1
and σ is a compatible permutation of length n, then σ is anti-Baxter [3].

3 A Bijection from Snow Leopard Permutations to Catalan Paths

Like the snow leopard permutations, Catalan paths have a natural recursive decomposition. In
particular, every nonempty Catalan path with 2n steps has the form Np1Ep2, where p1 and p2 are
Catalan paths with 2k and 2l steps, respectively, and n = k + l − 1. In fact, this decomposition
gives a bijection between the set of Catalan paths p with 2n steps and ordered pairs (p1, p2) of
Catalan paths with 2k and 2l steps, where n = k + l − 1. Matching this decomposition with our
snow leopard permutation decomposition gives us a natural bijection from the set of Catalan paths
with 2n steps to the set of snow leopard permutations of length 2n− 1.

Proposition 3.1. Suppose f is any of the functions r, c, i◦r, and i◦c. Then for each nonnegative
integer n there is a unique bijection Γf from the set of Catalan paths with 2n steps to the set of
snow leopard permutations of length 2n− 1 such that Γf (∅) = a and Γf (Np1Ep2) = (1⊕Γf (p1)

f ⊕
1)	 1	 Γf (p2) for any Catalan paths p1 and p2.

Proof. Since each nonempty Catalan path can be written uniquely in the form Np1Ep2, where p1
and p2 are Catalan paths, Γf is well-defined and unique.

To show that Γf (p) is a snow leopard permutation for every Catalan path p, first note that this is
true for p = ∅ and p = NE. Now suppose by induction that p is a Catalan path with at least 4 steps,
and that the result holds for all Catalan paths with fewer steps. Then there are unique Catalan paths
p1 and p2 such that p = Np1Ep2, and by definition we have Γf (p) = (1⊕Γf (p1)

f ⊕ 1)	 1	Γf (p2).
By induction Γf (p1) and Γf (p2) are snow leopard permutations, so by Theorem 2.20 we see that
Γf (p) is also a snow leopard permutation.

To show that Γf is onto, first note that this is true for n = 0 and n = 1, so fix n ≥ 2 and suppose
by induction that the result holds for all smaller values of n. If π is a snow leopard permutation
of length 2n− 1, then by Theorem 2.20 there are shorter snow leopard permutations π1 and π2 of
odd length such that π = (1 ⊕ πf1 ⊕ 1) 	 1 	 π2. By induction there are Catalan paths p1 and p2
such that Γf (p1) = π1 and Γf (p2) = π2, and by the definition of Γf we have Γf (Np1Ep2) = π.

Since the set of Catalan paths with 2n steps and the set of snow leopard permutations of length
2n− 1 are equinumerous by Corollary 2.21, the map Γf must be a bijection.

Although all four maps Γf are bijections, we will be particularly interested in Γc. In Table 1
we have the values of Γc for all Catalan paths with 8 or fewer steps. While it is not obvious from
these data, it turns out that Γ−1c has a simple, direct description in terms of ascents and descents.

Definition 3.2. For any snow leopard permutation π of length 2n− 1, we write κ(π) to denote the
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p Γc(p)

∅ a

NE 1

NNEE 123
NENE 321

NNNEEE 14325
NNENEE 12345
NNEENE 34521
NENNEE 54123
NENENE 54321

p Γc(p)

NNNNEEEE 1634527
NNNENEEE 1654327
NNNEENEE 1432567
NNNEEENE 3654721
NNENNEEE 1236547
NNENENEE 1234567
NNENEENE 3456721
NNEENENE 5674321
NNEENNEE 5674123
NENNNEEE 7614325
NENNENEE 7612345
NENNEENE 7634521
NENENNEE 7654123
NENENENE 7654321

Table 1: Values of Γc(p) for short Catalan paths p.

lattice path with 2n steps whose ith step κ(π)i is given by

κ(π)i =



π(i) < π(i+ 1) and i is odd

N or

π(i) > π(i+ 1) and i is even

π(i) < π(i+ 1) and i is even

E or

π(i) > π(i+ 1) and i is odd

for 0 ≤ i ≤ 2n − 1. By convention, we treat the empty entries π(0) and π(2n) as 2n and 0,
respectively.

Example 3.3. The permutation π = 789634521 has ascent/descent sequence DAADDAADDD,
so we have κ(π) = NNEENNEENE.

In Table 2 we have the values of κ(π) for all snow leopard permutations π of length 7 or less.
It is not immediately obvious that κ maps every snow leopard permutation to a Catalan path,

so we prove this next.

Proposition 3.4. Suppose π is a snow leopard permutation of length 2n − 1. Then κ(π) is a
Catalan path of length 2n.

Proof. It is routine to check this when π has length 3 or less, since κ(a) = ∅, κ(1) = NE, κ(123) =
NNEE, and κ(321) = NENE. Now suppose the result holds for all snow leopard permutations of
odd length less than 2n− 1, where 2n− 1 ≥ 5, and that π is a snow leopard permutation of length
2n − 1. By Theorem 2.20, there are snow leopard permutations π1 and π2 of lengths 2k − 1 and
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π κ(π)

a ∅
1 NE

123 NNEE
321 NENE

14325 NNNEEE
12345 NNENEE
34521 NNEENE
54123 NENNEE
54321 NENENE

π κ(π)

1634527 NNNNEEEE
1654327 NNNENEEE
1432567 NNNEENEE
3654721 NNNEEENE
1236547 NNENNEEE
1234567 NNENENEE
3456721 NNENEENE
5674321 NNEENENE
5674123 NNEENNEE
7614325 NENNNEEE
7612345 NENNENEE
7634521 NENNEENE
7654123 NENENNEE
7654321 NENENENE

Table 2: Values of κ(π) for short snow leopard permutations π.

2l − 1, respectively, such that n = k + l + 1 and π = (1⊕ πc1 ⊕ 1)	 1	 π2. We now consider three
cases.

Case One. If π1 = a then π = 1	 1	 π2. In this case the ascent/descent sequence for π consists
of two descents, followed by the ascent/descent sequence for π2. By the definition of κ, this means
κ(π) = NEκ(π2). Since κ(π2) is a Catalan path by induction, so is κ(π).

Case Two. If π2 = a then π = 1 ⊕ πc1 ⊕ 1. Since the complement operation on permutations
turns ascents into descents and vice versa, the ascent/descent sequence for π consists of a descent,
followed by the complement of the ascent/descent sequence for π1, followed by a descent. By the
definition of κ, this means κ(π) = Nκ(π1)E. Since κ(π1) is a Catalan path by induction, so is κ(π).

Case Three. Suppose π1 6= a and π2 6= a. Reasoning as in the previous cases, we find that the as-
cent/descent sequence for π consists of a descent, followed by the complement of the ascent/descent
sequence for π1, followed by an E, followed by the ascent/descent sequence for π2. By the definition
of κ, this means κ(π) = Nκ(π1)Eκ(π2). Since κ(π1) and κ(π2) are Catalan paths by induction, so
is κ(π).

The data in Tables 1 and 2, along with a close examination of the proof of Proposition 3.4,
suggest that κ and Γc are inverses of one another; we prove this next.

Theorem 3.5. κ and Γc are inverse functions.

Proof. By Proposition 3.1 we know that Γc maps Catalan paths with 2n steps to snow leopard per-
mutations of length 2n−1, and by Proposition 3.4 the function κ maps snow leopard permutations
of length 2n− 1 to Catalan paths with 2n steps. Since Γc is invertible, it’s sufficient to show that
Γc(κ(π)) = π for every snow leopard permutation π.

The result is routine to check for π = a and π = 1, so suppose π has length 2n− 1 > 1 and the
result holds for all shorter snow leopard permutations. By Theorem 2.20 there are snow leopard
permutations π1 and π2 such that π = (1⊕πc1⊕1)	1	π2. Reasoning as in the proof of Proposition
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3.4, we see that κ(π) = Nκ(π1)Eκ(π2). Now by the definition of Γc and our induction hypothesis
we have

Γc(κ(π)) = Γc(Nκ(π1)Eκ(π2))

= N(Γc(κ(π1)))
cEΓc(κ(π2))

= Nπc1Eπ2

= π,

as desired.

4 Using Transpositions to Generate Snow Leopard Permutations

It is well known that every permutation is a product of adjacent transpositions, so the adjacent
transpositions generate Sn. In this section we introduce a simple set of transpositions, and we
show that the snow leopard permutations of odd length are exactly the permutations one can
construct from the decreasing permutation using sequences of our transpositions. We begin with
the transpositions themselves.

Definition 4.1. Suppose π is a permutation with consecutive entries π(i), π(i+ 1), . . . , π(j).

1. If π(i) and π(j) are odd and either π(i−1), π(i), ..., π(j), π(j+1) or π(i−1), π(j), ..., π(i), π(j+
1) is a decreasing sequence of consecutive integers, and σ is the permutation we obtain from
π by interchanging π(i) and π(j), then we say π and σ are related by τ1.

2. If π(i) and π(j) are even and either π(i−1), π(i), ..., π(j), π(j+1) or π(i−1), π(j), ..., π(i), π(j+
1) is an increasing sequence of consecutive integers, and σ is the permutation we obtain from
π by interchanging π(i) and π(j), then we say π and σ are related by τ2.

By convention, if π(i) or π(j) occurs at either end of π, then we waive any requirement for the
behavior of π beyond that point.

Example 4.2. The permutations π = 983654721 and σ = 983456721 are related by τ2, since 36547
can be replaced with 34567.

Example 4.3. The permutations π = 567894321 and σ = 567894123 are related by τ1, since 4321
can be replaced with 4123.

In Figure 10 we have graphs showing how the snow leopard permutations of lengths 3, 5, and 7
are related to one another by τ1 and τ2. Although we don’t do it here, one can study the parity of
the number of inversions in a snow leopard permutation of odd length to show that these graphs
are always bipartite.

As we show next, snow leopard permutations are only related to other snow leopard permuta-
tions by τ1 and τ2. We begin with a lemma concerning snow leopard permutations which begin
with a decreasing sequence of consecutive integers.

Lemma 4.4. If π is a snow leopard permutation of odd length, and there is a permutation σ of odd
length with π = 1	 1	 · · · 	 1	 σ, then σ is a snow leopard permutation.
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1654327 

7634521 5674321 7654123 
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Figure 10: Graphs showing how the snow leopard permutations of lengths
3, 5, and 7 are related by τ1 and τ2.

Proof. We argue by induction on |π| − |σ|.
If |π| = |σ| then π = σ, and the result is clear. If |π|−|σ| = 2 then π = 1	1	σ = (1⊕a⊕1)	1	σ

must be the snow leopard decomposition of π guaranteed by Theorem 2.20, so σ is a snow leopard
permutation.

Now suppose |π| − |σ| ≥ 4. By Theorem 2.20 there are snow leopard permutations π1 and π2
such that π = (1⊕ πc1⊕ 1)	 1	 π2. But π begins with its largest element, so we must have π1 = a
and π = 1	 1	 π2. Therefore π2 has the same form as π, but with two fewer 1s, so by induction
σ is a snow leopard permutation.

Theorem 4.5. Suppose π is a snow leopard permutation of odd length and σ is a permutation.

(i) If π and σ are related by τ1, then σ is a snow leopard permutation.

(ii) If π and σ are related by τ2, then σ is a snow leopard permutation.

Proof. It turns out that (i) and (ii) depend on each other, so we prove them together.
It’s routine to check that (i) and (ii) hold when π and σ have lengths −1, 1, or 3, so suppose

|π| = |σ| ≥ 5; we argue by induction on |π|.

Case One. π and σ are related by τ1.
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By Theorem 2.20, there are snow leopard permutations π1 and π2 such that π = (1⊕ πc1⊕ 1)	
1	 π2.

First suppose π1 = a, so that π = 1 	 1 	 π2. In this case, if i ≥ 3 then our swap takes place
inside π2, so there is a permutation σ2 which is related to π2 by τ1 such that σ = 1 	 1 	 σ2. By
induction, σ2 is a snow leopard permutation, so σ is also a snow leopard permutation by Theorem
2.20. On the other hand, if i ≤ 2 then i = 1, since the first entry of π is odd and the second is
even. In this case there is a permutation β of odd length such that π = 1	 1	· · ·	 1	β, and β is
a snow leopard permutation by Lemma 4.4. Now σ = (1⊕ αc ⊕ 1)	 1	 β, where α is an identity
permutation of odd length. Since α and β are snow leopard permutations, σ is also a snow leopard
permutation by Theorem 2.20.

Now suppose π1 6= a. In this case our decreasing sequence must be entirely contained in either
πc1 or 1 	 π2. Since the 1 	 π2 part of π begins with an even number, any decreasing sequence
beginning with an odd number in this part of π must be contained in π2. Therefore there is a
permutation σ2 which is related to π2 by τ1, such that σ = (1⊕ πc1 ⊕ 1)	 1	 σ2. By induction σ2
is a snow leopard permutation, so σ is a snow leopard permutation by Theorem 2.20.

On the other hand, if our decreasing sequence is contained in πc1, then it corresponds to an
increasing sequence in π1 which begins with an even number. Therefore, there is a permutation σ1
which is related to π1 by τ2, for which σ = (1⊕σc1⊕ 1)	 1	π2. By induction σ1 is a snow leopard
permutation, so σ is also a snow leopard permutation by Theorem 2.20.

Case Two. π and σ are related by τ2.
By Theorem 2.20, there are snow leopard permutations π1 and π2 such that π = (1⊕ πc1⊕ 1)	

1	 π2. In addition, any increasing sequence in π must be entirely contained in the 1⊕ πc1 ⊕ 1 part
of π, or in the π2 part of π. If our increasing sequence is contained in the π2 part of π, then there
is a permutation σ2 which is related to π2 by τ2, such that σ = (1⊕ πc1⊕ 1)	 1	 σ2. By induction
σ2 is a snow leopard permutation, so σ is also a snow leopard permutation by Theorem 2.20.

On the other hand, if our increasing sequence is contained in the 1⊕ πc1 ⊕ 1 part of π, then we
must have i ≥ 2 and i ≤ |π1| + 1, since this part of π begins and ends with odd numbers. That
is, our increasing sequence must be entirely contained in πc1. Therefore, this increasing sequence
corresponds to a decreasing sequence in π1, all of whose entries have opposite parity with the
corresponding entries in π. This means there is a permutation σ1 which is related to π1 by τ1, such
that σ = (1⊕ σc1 ⊕ 1)	 1	 π2 By induction σ1 is a snow leopard permutation, so σ is also a snow
leopard permutation by Theorem 2.20.

We are interested in permutations which are connected by chains of permutations in which
consecutive permutations are related by τ1 or τ2, so we make the following definition.

Definition 4.6. We say permutations π and σ are τ -related whenever there is a sequence α1, . . . , αn
of permutations such that π = α1, σ = αn, and for each j, the permutations αj and αj−1 are related
by τ1 or related by τ2.

We can now show that the snow leopard permutations of odd length are exactly those permu-
tations that are τ -related to the reverse identity.

Theorem 4.7. A permutation π of length 2n− 1 is a snow leopard permutation if and only if it is
τ -related to the decreasing permutation of length 2n− 1.
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Proof. (⇒) It is routine to verify this result when π has length −1, 1, or 3, so suppose |π| ≥ 5; we
argue by induction on |π|. By Theorem 2.20 there are snow leopard permutations π1 and π2 of odd
length such that π = (1⊕ πc1⊕ 1)	 1	 π2. By induction, there is a sequence s1 (resp. s2) of moves
of types τ1 and τ2 which, when applied to the decreasing permutation of the appropriate length,
produces π1 (resp. π2). To obtain π from the decreasing permutation of length 2n− 1, first apply a
move of type τ1 to swap the entries in positions 1 and |π1|+2. Now apply the sequence s2 of moves
to the entries to the right of position |π1| + 3. Finally, for each move in s1 of type τ1, apply the
corresponding move of type τ2 to the subsequence in positions 2 through |π1| + 1, and vice versa.
Since we have constructed each of the pieces of π individually, the resulting permutation is π itself.

(⇐) It is routine to check that the decreasing permutation of length 2n − 1 is a snow leopard
permutation, so this part is immediate from Theorem 4.5.

Corollary 4.8. Suppose π and σ are τ -related permutations of odd length. Then π is a snow
leopard permutation if and only if σ is a snow leopard permutation.

Proof. This is immediate from Theorem 4.7, since π and σ are snow leopard permutations if and
only if they are τ -related to the decreasing permutation of length |π|, and this relationship is
transitive.

5 Questions and Open Problems

It should be possible to build on this work in a variety of directions. For example, it may be fruitful
to study the distributions of various permutation statistics on snow leopard permutations, and to
look for connections between these statistics and statistics on Catalan paths, or on other Catalan
objects. In addition, both κ and the compatibility relation deserve more attention. Finally, we
have the following more specific questions.

1. Can we characterize the snow leopard permutations non-recursively?

We have given a recursive decomposition of the snow leopard permutations, so in principle we
can recognize these permutations in the wild using this decomposition. Similarly, we have also
characterized the snow leopard permutations as the permutations generated by a particular
set of transpositions. While these points of view are useful, we would also like to have a short
list of simple conditions we can check to determine whether a given permutation is an SLP.
For example, we know that if π is a snow leopard permutation of odd length then π preserves
parity, π avoids 2− 14− 3 and 3− 41− 2, and κ(π) is a Catalan path. These conditions rule
out many permutations, but there are still permutations with all of these properties which
are not SLPs. In fact, in Table 3 we see how the number of permutations with these three

length 1 3 5 7 9

SLP-like permutations 1 2 7 32 175
SLPs 1 2 5 14 42

Table 3: The number of SLPs compared with the number of permutations
with some properties of SLPs.

properties compares with the number of snow leopard permutations for small lengths.
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2. What permutations of length n are compatible with alternating Baxter permutations of length
n+ 1?

Cori, Dulucq, and Viennot [9] have used bijections with binary trees to prove that the alter-
nating Baxter permutations of lengths 2n and 2n + 1 are counted by the products C2

n and
CnCn+1 of Catalan numbers, respectively. We conjecture that the smaller permutations which
are compatible with the alternating Baxter permutations are counted by the same products of
Catalan numbers. Our preliminary explorations suggest that we can extend either the work
of Cori, Dulucq, and Viennot or the work of Dulucq and Guibert [11] to prove this conjecture,
but it might also be possible to extend or modify κ to give a proof.
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