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Abstract

Gire, West, and Kremer have found ten classes of restricted permutations counted
by the large Schröder numbers, no two of which are trivially Wilf-equivalent. In this
paper we enumerate eleven classes of restricted signed permutations counted by the
large Schröder numbers, no two of which are trivially Wilf-equivalent. We obtain five
of these enumerations by elementary methods, five by displaying isomorphisms with
the classical Schröder generating tree, and one by giving an isomorphism with a new
Schröder generating tree. When combined with a result of Egge and a computer search,
this completes the classification of restricted signed permutations counted by the large
Schröder numbers in which the set of restrictions consists of two patterns of length 2
and two of length 3.

Keywords: Restricted permutation; pattern-avoiding permutation; forbidden sub-
sequence; Schröder number; signed permutation; generating tree

1 Introduction and Notation

Let Bn denote the set of permutations of {1, 2, . . . , n}, written in one-line notation, in which
each element may or may not have a bar above it. We refer to the elements of Bn as signed
permutations. We write Sn to denote the set of elements of Bn with no bars, and we refer
to these elements as classical permutations. For any signed permutation π we write |π| to
denote the length of π and we write π(i) to denote the ith entry of π.

Suppose π and σ are signed permutations. We say a subsequence of π has type σ whenever
it has all of the same pairwise comparisons as σ and an entry in the subsequence of π is barred
if and only if the corresponding entry in σ is barred. For example, the subsequence 3471
of the signed permutation 934728516 has type 2341. We say π avoids σ whenever π has no
subsequence of type σ. For example, the signed permutation 934728516 avoids 321 and 1432
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but it has 925 as a subsequence so it does not avoid 312. In this setting σ is sometimes called
a pattern or a forbidden subsequence and π is sometimes called a restricted permutation or
a pattern-avoiding permutation. In this paper we will be interested in signed permutations
which avoid several patterns, so for any set R of signed permutations we write Bn(R) to
denote the set of signed permutations of length n which avoid every pattern in R and we
write B(R) to denote the set of all signed permutations which avoid every pattern in R.
When R = {π1, . . . , πr} we often write Bn(R) = Bn(π1, . . . , πr) and B(R) = B(π1, . . . , πr).
When we wish to discuss classical permutations, we replace B with S in the above notation.

Suppose R1 and R2 are sets of signed permutations. We say R1 and R2 are Wilf-equivalent
whenever |Bn(R1)| = |Bn(R2)| for all n ≥ 0. There are four natural operations which preserve
Wilf-equivalence classes:

• the bar operator, which replaces each barred entry in a signed permutation with its
unbarred counterpart and vice versa;

• the reverse operator, which writes the entries of a signed permutation in reverse order;

• the complement operator, which replaces each entry π(i) of a signed permutation π
with |π|+ 1− π(i);

• the inverse operator, which replaces each signed permutation with its group-theoretic
inverse.

For example, if π = 2413 then bar(π) = 2413, reverse(π) = 3142, complement(π) = 3142,
and inverse(π) = 3142. If we write each signed permutation as a square permutation matrix
in which barred entries are represented by −1s, then the bar operator is multiplication by
−1, the reverse operator is the reflection over the vertical axis, the complement operator is
the reflection over the horizontal axis, and the inverse operator is both the reflection over
the main diagonal and the usual matrix inverse. From this one can show that the group G
generated by these operations is isomorphic to D8 ⊕ Z2, where D8 is the dihedral group of
order 8. We say R1 is trivially Wilf-equivalent to R2 whenever R2 is the image of R1 under
some element of G.

The focus of this paper is on restricted signed permutations, but it includes a major
role for the large Schröder numbers. (There are also small Schröder numbers, which are,
up to a shift in index, half of the large Schröder numbers.) The large Schröder numbers
(hereafter just the Schröder numbers) may be recursively defined by r0 = 1 and rn =
rn−1 +

∑n
k=1 rk−1rn−k for n ≥ 0. From this definition one can show that the generating

function for the Schröder numbers is given by

∞∑
n=0

rnx
n =

1− x−
√
x2 − 6x+ 1

2x
. (1)

The Schröder numbers are closely related to the ubiquitous Catalan numbers, and in partic-
ular one can also show that

rn =
n∑
d=0

(
2n− d
d

)
Cn−d (n ≥ 0). (2)
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Here Cn is the nth Catalan number, which may be defined by Cn = 1
n+1

(
2n
n

)
. For a list

of some of the known combinatorial interpretations of the Schröder numbers, see [12, pp.
239–240].

Gire [7], West [13], and Kremer [8] have found ten classes of classical pattern-avoiding
permutations which are enumerated by the Schröder numbers. (See [3] for other work along
these lines.) Each of the corresponding sets of forbidden patterns consists of two classical
permutations, each of length 4, and no two of these sets are trivially Wilf-equivalent. A
computer search reveals that every pair of classical permutations of length 4 whose pattern-
avoiding permutations are enumerated by Schröder numbers is trivially Wilf-equivalent to
one of the ten sets found by Gire, West, and Kremer, but to the best of our knowledge it is
not known whether there are other classes of classical pattern-avoiding permutations which
are enumerated by the Schröder numbers.

The enumeration of restricted signed permutations was first considered by Simion [11] and
studied further by Mansour and West [9]. In this paper we continue this study, considering
in particular the following twelve sets of forbidden signed permutations.

T1 = {21, 21, 312, 312}
T2 = {21, 21, 123, 123}
T3 = {21, 21, 123, 132}
T4 = {21, 21, 123, 231}

T5 = {21, 21, 123, 312}
T6 = {21, 21, 123, 321}
T7 = {21, 21, 312, 312}
T8 = {21, 21, 321, 321}

T9 = {21, 21, 321, 312}
T10 = {21, 21, 231, 312}
T11 = {21, 21, 132, 132}
T12 = {21, 21, 321, 312}

Egge has previously shown [6] that |Bn(T1)| = rn for all n ≥ 0. Here we begin by
using elementary methods to prove that if T is any set of classical permutations then
|Bn(21, 21, 123, T )| is a convolution of |Sn(T )| with a certain sequence of binomial coeffi-
cients. Combining this with (2), we conclude that for any set R among T2 − T6 we have
|Bn(R)| = rn for all n ≥ 0. Next we recall some basic facts concerning generating trees,
including the classical Schröder tree, and we describe how each set of restricted signed per-
mutations can be organized into a generating tree in a natural way. For each set R among
T7 − T11 we give an isomorphism between the generating tree for B(R) and the classical
Schröder tree. It follows that for each set R among T7 − T11 we have |Bn(R)| = rn for all
n ≥ 0. We then introduce a new generating tree, which we call the tilted Schröder tree. We
use the kernel method to prove that for all n ≥ 0 this tree has exactly rn nodes on level n,
and we give an isomorphism between the generating tree for B(T12) and the tilted Schröder
tree. It follows that |Bn(T12)| = rn for all n ≥ 0.

It is routine to check that no two of the sets of forbidden signed permutations in T1−T12
are trivially Wilf-equivalent. (As an aside, T3, T7, T9, T10, and T11 are each trivially Wilf-
equivalent to 15 other sets, and the remaining Ti are each trivially Wilf-equivalent to 7 other
sets.) A computer search reveals that if R is any set of signed permutations consisting of two
signed permutations of length 2 and two of length 3, and |Bn(R)| = rn for 0 ≤ n ≤ 5, then
R is trivially Wilf-equivalent to one of T1−T12. In short, up to trivial Wilf-equivalence, this
paper completes the classification of restricted signed permutations counted by the Schröder
numbers whose forbidden patterns consist of two patterns of length 2 and two of length 3.
To the best of our knowledge, it is not known whether there are other classes of restricted
signed permutations counted by the Schröder numbers.
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2 A Convolution with Certain Binomial Coefficients

Some enumerations of pattern-avoiding signed permutations can be obtained from corre-
sponding enumerations of classical pattern-avoiding permutations. For instance, the fact
that |Bn| = 2n|Sn| for n ≥ 0 can be generalized as follows.

Definition 2.1 For any set T of classical permutations, we write T̂ to denote the set of
signed permutations obtained by putting bars over the entries in the elements of T in all
possible ways.

To illustrate Definition 2.1, we observe that if T = {12} then T̂ = {12, 12, 12, 12}.
Proposition 2.2 For any set T of classical permutations, we have

Bn(T̂ ) = Ŝn(T ) (n ≥ 0). (3)

In particular,
|Bn(T̂ )| = 2n|Sn(T )| (n ≥ 0). (4)

Proof. To prove (3), note that π ∈ Bn(T̂ ) if and only if ||π|| ∈ Sn(T ), where ||π|| is the
classical permutation obtained by removing all bars from π.

Line (4) is immediate from (3). 2

Proposition 2.2 allows us to recover a result of Mansour and West.

Corollary 2.3 ([9, Eq. (4.4)]) For all n ≥ 0 we have |Bn(12, 12, 12, 12)| = 2n.

Proof. Set T = {12} in (4) and use the fact that |Sn(12)| = 1 for all n ≥ 0. 2

The main result of this section relates enumerations of classical pattern-avoiding permu-
tations with pattern-avoiding signed permutations by a convolution with certain binomial
coefficients. To prove the result, we will use the following technical lemma.

Lemma 2.4 A signed permutation π avoids 21, 21, and 123 if and only if both of the fol-
lowing hold.

(i) The barred entries of π are in increasing order.

(ii) If a barred entry of π has an unbarred entry to its right, then the barred entry is less
than all unbarred entries of π.

Proof. (=⇒) Suppose π avoids 21, 21, and 123. First observe that (i) follows from the fact
that π avoids 21. To prove (ii), suppose π(i) is barred, π(j) is unbarred, and i < j. If there
is an unbarred entry a of π to the right of π(i) such that π(i) > a then π(i)a has type 21.
If there is an unbarred entry a of π to the left of π(i) such that π(i) > a then aπ(i)π(j) has
type 123. Now (ii) follows.

(⇐=) Suppose (i) and (ii) hold for a signed permutation π. By (i), π avoids 21. If π
contains a pattern of type 21 or 123 then the entry playing the role of the 2 violates (ii), so
π avoids 21 and 123. 2

In our next result, we use Lemma 2.4 to count signed permutations which have a given
number of barred entries and which avoid 21, 21, 123, and any set T of classical patterns.
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Proposition 2.5 Let T denote a set of classical permutations. Then for all n ≥ 0 and all

d such that 0 ≤ d ≤ n there are

(
2n− d
d

)
|Sn−d(T )| signed permutations in Bn which avoid

21, 21, 123, and T and which have exactly d barred entries.

Proof. Fix n ≥ 0 and d such that 0 ≤ d ≤ n. We first describe an algorithm for constructing
a signed permutation π which avoids 21, 21, 123, and T and which has exactly d barred
entries.

1. Choose a classical permutation σ ∈ Sn−d(T ).

2. Construct the graph of σ by placing (unbarred) dots at the points (i, σ(i)) for 1 ≤ i ≤
n− d.

3. View the n−d vertical lines x = 1
2
, x = 3

2
, . . . , x = n−d− 1

2
and the n−d+1 horizontal

lines y = 1
2
, y = 3

2
, . . . , y = n−d+ 1

2
as baskets, and place a total of d indistinguishable

balls in the 2n − 2d + 1 baskets. That is, distribute d barred dots among the points
(1
2
, 0), (3

2
, 0), . . . , (n− d− 1

2
, 0), (n− d+ 1

2
, 1
2
), (n− d+ 1

2
, 3
2
), . . . , (n− d+ 1

2
, n− d+ 1

2
),

allowing multiple dots at each point.

4. Produce the graph of a signed permutation as follows.

(a) Space the points of the graph of σ and the inserted dots in order horizontally,
starting with the dots on x = 1

2
, followed by the dot at (1, σ(1)), followed by the

dots on x = 3
2
, etc., followed by the dot at (n− d, σ(n− d)), followed by the dots

on y = 1
2
, followed by the dots on y = 3

2
, etc.

As an example, suppose σ = 231, there are two dots on x = 1
2
, there is one dot

on x = 3
2
, and there is one dot on y = 3

2
. After this step there will be dots on

(1, 0), (2, 0), (3, 2), (4, 0), (5, 3), (6, 1), and (7, 3
2
). Of these, only the dots on

(3, 2), (5, 3), and (6, 1) will be unbarred.

(b) Space the points of the graph of σ and the inserted dots in order vertically, starting
with the dots which were on x = 1

2
, followed by the dots which were on x = 3

2
,

etc., followed by the dots which were on x = n − d − 1
2
, followed by the dots

on y = 1
2
, followed by the dot which was at (σ−1(1), 1), followed by the dots on

y = 3
2
, followed by the dot which was at (σ−1(2), 2), etc.

In the example begun in (a), the resulting diagram will have barred dots at (1, 1),
(2, 2), (4, 3), and (7, 5), and it will have unbarred dots at (6, 4), (3, 6), and (5, 7).
The associated signed permutation is 1263745.

Observe that step 4 guarantees that this algorithm always produces (the graph of) a signed
permutation of length n with exactly d barred entries. In view of Lemma 2.4, the algorithm
produces only signed permutations which avoid 21, 21, 123, and T , and each such signed
permutation is produced in exactly one way. Steps 2 and 4 may each be performed in just
one way, and step 1 may be performed in |Sn−d(T )| ways. In step 3 we are inserting d
indistinguishable balls in 2n − 2d + 1 distinguishable baskets; there are

(
2n−d
d

)
ways to do

this. The result follows. 2
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Proposition 2.5 gives us two sets of signed permutations counted by the Fibonacci num-
bers, one of which was previously found by Mansour and West [9, Eq. (3.5)] and later by
Egge [6].

Proposition 2.6 For any permutation σ ∈ S2 we have

|Bn(21, 21, 123, σ)| = F2n+1 (n ≥ 0), (5)

where Fn is the nth Fibonacci number, defined by F0 = 0, F1 = 1, and Fn = Fn−1 +Fn−2 for
n ≥ 2.

Proof. Set T = {σ} in Proposition 2.5 and use the fact that |Sn(T )| = 1 for all n ≥ 0 to
obtain

|Bn(21, 21, 123, σ)| =
n∑
d=0

(
2n− d
d

)
(n ≥ 0).

This last expression is well-known to be equal to F2n+1. (See [4, Thm. 7.1.2], for instance.)
2

Proposition 2.5 also gives us several sets of signed permutations counted by the Schröder
numbers.

Theorem 2.7 For any permutation σ ∈ S3 we have

|Bn(21, 21, 123, σ)| = rn (n ≥ 0). (6)

We observe that the sets corresponding to σ = 132 and σ = 213 are trivially Wilf-equivalent.

Proof. Set T = {σ} in Proposition 2.5, use the fact that |Sn(σ)| = Cn for n ≥ 0, and use
(2) to simplify the result. 2

Observe that by choosing σ appropriately in Theorem 2.7 we obtain the five sets T2− T6
of forbidden patterns given in the Introduction. The sixth choice of σ is σ = 213, but the
resulting set {21, 21, 123, 213} can be transformed into T3 by first applying the reverse map,
then the complement map, and finally the inverse map.

3 An Interlude on Generating Trees

For our purposes, a generating tree is a rooted, labeled tree in which the label of each node
determines the node’s number of children and their labels. In many generating trees the
label of each node is its number of children, but this is not required. We generally specify a
particular generating tree by giving two pieces of data:

• the label of the root node;

• a list of succession rules, which state for each label k the number of children a node
with label k has and what their labels are.

Many generating trees of combinatorial significance are known; [1, 14] contain several exam-
ples of interest. We content ourselves here by recalling one which is particularly relevant.
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Example 3.1 [14, Ex. 5] The classical Schröder generating tree is given by

• Root: (2);

• Rule: (k)→ (3)(4) · · · (k − 1)(k)(k + 1)(k + 1) for k ≥ 2.

In particular, (2)→ (3)(3) and (3)→ (3)(4)(4).

Given a generating tree, we are often interested in how many nodes it has on level n, where
the root is on level 0. The classical Schröder tree gets its name from the well-known fact
that it has rn nodes on level n for all n ≥ 0.

Signed pattern-avoiding permutations (as well as classical pattern-avoiding permutations)
have a natural generating tree structure. To describe this structure, suppose T is a set of
forbidden signed permutations. The nodes on level n of the associated generating tree are
the elements of Bn(T ), and in the absence of a simpler labeling scheme, we regard each
node as being labeled with its associated signed permutation. Each signed permutation
π ∈ Bn−1(T ) has n spaces in which an n or an n may be inserted to produce a signed
permutation in Bn, but in general only some of the resulting signed permutations will avoid
T . For us the children of π ∈ Bn−1(T ) are those signed permutations which are obtained
from π by inserting n or n and which avoid T . Given π ∈ Bn−1(T ), we call an insertion space
unbar-active (resp. bar-active) whenever insertion of n (resp. n) in that space produces an
element of Bn(T ) and we call the space unbar-inactive (resp. bar-inactive) otherwise.

Example 3.2 Suppose T = {21, 123} and π = 41523. Then the left-most three spaces of π
are unbar-active, the remaining spaces are unbar-inactive, the right-most two spaces of π are
bar-active, and the remaining spaces are bar-inactive.

Suppose T is a set of forbidden patterns and π ∈ Bn−1(T ) for some n ≥ 1. We note
that if a space is unbar-inactive in π then it retains that status in all of the children of
π. Inserting n into an unbar-inactive space of π produces a forbidden pattern, and since π
avoids T , the newly inserted entry n must participate in that forbidden pattern. Along the
same lines, suppose spaces s1 and s2 in π are unbar-active, but insertion of n in s1 causes
s2 to become unbar-inactive. Then the signed permutation obtained from π by inserting n
in s1 and n+ 1 in s2 contains a forbidden pattern, and n and n+ 1 both participate in that
pattern. Similar comments hold for bar-active and bar-inactive spaces.

4 Isomorphisms to the Classical Schröder Tree

In this section we consider the following five sets of forbidden signed permutations.

• T7 = {21, 21, 312, 312}

• T8 = {21, 21, 321, 321}

• T9 = {21, 21, 321, 312}

• T10 = {21, 21, 231, 312}

• T11 = {21, 21, 132, 132}

Following [8, 13], for each of T7−T11 we give an isomorphism between the generating tree for
the associated pattern-avoiding signed permutations and the classical Schröder generating
tree. (For another approach which can be used to enumerate these signed permutations, see
[2].) To obtain our isomorphisms, we analyze the behavior of the unbar-active and bar-active
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spaces of a signed permutation when n or n is inserted. We begin by observing that if π
avoids any of T7 − T11 then just one space in π can be unbar-active.

Lemma 4.1 Suppose n ≥ 2 and T is one of T7 − T11 above. Fix π ∈ Bn−1(T ). Then the
right-most space of π is unbar-active and all other spaces of π are unbar-inactive.

Proof. Observe that no forbidden pattern ends with its largest entry, so the right-most space
of π is unbar-active. However, inserting n into any other space will produce a subsequence
of type 21 or a subsequence of type 21, depending on whether the right-most entry of π is
barred. Both patterns are forbidden, so no other space in π is unbar-active. 2

Next we analyze the effect inserting n has on the bar-active spaces.

Lemma 4.2 Suppose n ≥ 2 and T is one of T7 − T11 above. Fix π ∈ Bn−1(T ) and let
π+ denote the signed permutation obtained by appending n to the right end of π. Then the
following hold.

(i) The right-most two spaces of π+ are bar-active.

(ii) Suppose s is a space in π+ which is not one of the right-most two spaces. Abusing
notation, we identify s with the corresponding space in π. Then s is bar-active in π+

if and only if it is bar-active in π.

Proof. (i) None of the forbidden patterns of length 2 contains 2 and none of the forbidden
patterns of length 3 ends with 3, so the right-most space of π+ is bar-active. Similarly, none
of the forbidden patterns of length 3 contains 32, so the second space from the right end of
π+ is bar-active.

(ii) If s is bar-inactive in π then it remains so in π+, so suppose by way of contradiction
that s is bar-active in π and bar-inactive in π+. Then inserting n+ 1 in π+ at s produces a
forbidden pattern in which both n and n+ 1 participate. But none of the forbidden patterns
of length 2 contains 2 and none of the forbidden patterns of length 3 contains 2. This is a
contradiction, so s must be bar-active in π+. 2

We now give an isomorphism between the generating tree for B(T7) and the classical
Schröder generating tree. This example illustrates one of the simpler ways the classical
Schröder tree can appear as a tree of pattern-avoiding permutations.

Theorem 4.3 For each signed permutation π ∈ B(T7), let f7(π) denote one plus the number
of spaces in π with no subsequence of type 12 or 12 to their right. Then the map π 7→ f7(π)
is an isomorphism of generating trees between the generating tree for B(T7) and the classical
Schröder generating tree. In particular,

|Bn(21, 21, 312, 312)| = rn (n ≥ 0).

Proof. To begin, observe that f7(∅) = 2 and f7(1) = f7(1) = 3, so both trees have the same
first two levels, and it is sufficient to show they have the same succession rules.

Fix n ≥ 2 and suppose π ∈ Bn−1(T7). Observe that since 2 does not appear in the
forbidden patterns of length 2, and since the other two forbidden patterns are 312 and 312,
a space in π is bar-active if and only if it has no subsequence of type 12 or 12 to its right. In
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view of Lemma 4.1, the signed permutation π has f7(π)− 1 spaces which are bar-active and
1 space which is unbar-active, so π has f7(π) children. In view of Lemma 4.2, the child of π
obtained by inserting n has f7(π)+1 children, so its image under f7 is f7(π)+1. To count the
children of the signed permutations obtained by inserting n into π, observe that the inserted
n and the entry immediately to its left form a subsequence of type 12 or 12. Therefore the
bar-active spaces in the new signed permutation are the spaces to the right of n and the space
immediately to the left of n. Hence the children of π have 3, 4, . . . , f7(π), f7(π) + 1, f7(π) + 1
children, and the result follows. 2

Next we describe an isomorphism between the generating tree for B(T8) and the clas-
sical Schröder generating tree. Here the classical Schröder tree appears in a slightly more
complicated way.

Theorem 4.4 For each signed permutation π ∈ B(T8), let f8(π) denote one plus the number
of spaces in π with no subsequence of type 21 or 21 to their right. Then the map π 7→ f8(π)
is an isomorphism of generating trees between the generating tree for B(T8) and the classical
Schröder generating tree. In particular,

|Bn(21, 21, 321, 321)| = rn (n ≥ 0).

Proof. To begin, observe that f8(∅) = 2 and f8(1) = f8(1) = 3, so both trees have the same
first two levels, and it is sufficient to show they have the same succession rules.

Fix n ≥ 2 and suppose π ∈ Bn−1(T8). Observe that since 2 does not appear in the
forbidden patterns of length 2, and since the other two forbidden patterns are 321 and 321,
a space in π is bar-active if and only if it has no subsequence of type 21 or 21 to its right. In
view of Lemma 4.1, the signed permutation π has f8(π)− 1 spaces which are bar-active and
1 space which is unbar-active, so π has f8(π) children. In view of Lemma 4.2, the child of π
obtained by inserting n has f8(π) + 1 children, so its image under f8 is f8(π) + 1. To count
the children of the signed permutations obtained by inserting n into π, first observe that if
n is inserted in the right-most space, all bar-active spaces remain bar-active. If n is inserted
in any other space, it forms a subsequence of type 21 or 21 with the entry immediately to
its right. In this case all spaces to the left of n become bar-inactive, while those to the right
of n remain bar-active. Therefore the children of π have f8(π) + 1, 3, 4, . . . , f8(π), f8(π) + 1
children, and the result follows. 2

The generating tree for B(T9) is the classical Schröder tree in an even more complicated
way.

Theorem 4.5 For each signed permutation π ∈ B(T9), let f9(π) denote one plus the number
of spaces in π with no subsequence of type 21 or 12 to their right. Then the map π 7→ f9(π)
is an isomorphism of generating trees between the generating tree for B(T9) and the classical
Schröder generating tree. In particular,

|Bn(21, 21, 321, 312)| = rn (n ≥ 0).

Proof. To begin, observe that f9(∅) = 2, and f9(1) = f9(1) = 3, so both trees have the same
first two levels, and it is sufficient to show they have the same succession rules.
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Fix n ≥ 2 and suppose π ∈ Bn−1(T9). Observe that since 2 does not appear in the
forbidden patterns of length 2, and since the other two forbidden patterns are 321 and 312,
a space in π is bar-active if and only if it has no subsequence of type 21 or 12 to its right.
In view of Lemma 4.1, the signed permutation π has f9(π) − 1 spaces which are bar-active
and 1 space which is unbar-active, so π has f9(π) children. In view of Lemma 4.2, the child
of π obtained by inserting n has f9(π) + 1 children, so its image under f9 is f9(π) + 1. To
count the children of the signed permutations obtained by inserting n into π, first observe
that all of the spaces to the right of the left-most bar-active space are also bar-active, and
that the subsequence σ enclosed by the bar-active spaces avoids 21, 21, 21, and 12. Hence
σ consists of a sequence of barred entries, in increasing order, followed by a sequence of
unbarred entries, in increasing order. We consider three cases.

Case One: σ has no barred entries.

First observe that when we insert n into the left-most space in σ, all spaces in the
resulting signed permutation are bar-active. Now observe that when we insert n into any
other space in σ, we create a pattern of type 12 consisting of n and the necessarily unbarred
entry immediately to its left. It follows from these observations that the bar-active spaces in
the new signed permutation are those to the right of n and the space immediately to the left.
Therefore the children of π obtained by inserting n have 3, 4, . . . , f9(π), f9(π) + 1, f9(π) + 1
children.

Case Two: σ has no unbarred entries.

First observe that when we insert n into the right-most space in σ, the spaces imme-
diately left and right of n are bar-active. Moreover, since no bar-active space in π has an
unbarred entry to its right and the only forbidden pattern which ends with its second largest
entry barred is 312, all spaces which are bar-active in π are bar-active in the new signed
permutation.

Now suppose we insert n into a bar-active space other than the right-most space in σ. In
this case we create a pattern of type 21 consisting of n and the entry immediately to its right.
Therefore the bar-active spaces in the new signed permutation are those to the right of n. It
follows that the children of π obtained by inserting n have f9(π) + 1, 3, 4, . . . , f9(π), f9(π) + 1
children.

Case Three: σ has both barred and unbarred entries.

Observe that when we insert n into the bar-active space between the last barred entry
and the first unbarred entry in σ we create no subsequence of type 21 or 12 in σ, so the
resulting signed permutation has f9(π) + 1 children. Now suppose we insert n among the
unbarred entries of σ. Then n, together with the unbarred entry immediately to its left,
forms a 12 pattern. It follows that the bar-active spaces in the new signed permutation are
those to the right of n and the space immediately to the left of n. Finally, suppose we insert
n among the barred entries of σ. Then n, together with the barred entry immediately to its
right, forms a 21 pattern. It follows that the bar-active spaces in the new signed permutation
are those to the right of n. Combining these observations, we find that the children of π
obtained by inserting n have 3, 4, . . . , k + 2, f9(π) + 1, k + 3, . . . , f9(π), f9(π) + 1 children,
where k is the number of unbarred entries in σ.
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In all cases the children of π have 3, 4, . . . , f9(π), f9(π) + 1, f9(π) + 1 children, and the
result follows. 2

Next we describe an isomorphism between the generating tree for B(T10) and the classical
Schröder generating tree. In contrast to our previous three isomorphisms, this map does not
include a detailed description of the locations of the bar-active spaces in a given permutation.
Nevertheless, the proof of the theorem restricts these locations somewhat.

Theorem 4.6 For each signed permutation π ∈ B(T10), let f10(π) denote one plus the
number of bar-active spaces in π. Then the map π 7→ f10(π) is an isomorphism of generating
trees between the generating tree for B(T10) and the classical Schröder generating tree. In
particular,

|Bn(21, 21, 231, 312)| = rn (n ≥ 0).

Proof. To begin, observe that f10(∅) = 2 and f10(1) = f10(1) = 3, so both trees have the
same first two levels. In view of Lemma 4.1, the quantity f10(π) is the number of children
of π, so it is sufficient to verify these children have the correct labels.

Fix n ≥ 2 and suppose π ∈ Bn−1(T10). We consider two cases.

Case One: π ends with a (possibly empty) sequence σu of unbarred entries, which is
immediately preceded by a (maximal) nonempty sequence σb of barred entries.

We first claim that no space to the left of σb which is not adjacent an entry of σb is
bar-active. This claim is vacuously true if there is no entry to the left of σb, so suppose a is
the right-most entry left of σb. To prove the claim, first observe that a and the barred entry
to its right form a sequence of type 21 or 12. The first case is forbidden. If we insert n to
the left of the right-most unbarred entry in the second case we produce a sequence of type
312, which is forbidden, and the claim follows.

Suppose we insert n into a bar-active space in σu, so that n has an unbarred entry to
its left. (Lemma 4.2(i) guarantees such a space exists in σu.) The only forbidden pattern
of length 3 which has 2 and 3 adjacent is 231 and no entry to the right of n in the new
signed permutation is barred, so the spaces immediately left and right of n are bar-active
in the new signed permutation. Since 312 is forbidden, all other spaces to the left of n are
bar-inactive in the new signed permutation. Since no forbidden pattern of length 3 has 1, 2,
and 3 with 2 and 3 in increasing order, all spaces to the right of n which were bar-active in
π are bar-active in the new signed permutation.

Now suppose we insert n in the space between σb and σu. (Observe that this space is
always bar-active.) As above, the spaces immediately left and right of n are bar-active in the
new signed permutation. Moreover, if a space was bar-active in π then it is also bar-active
in the new signed permutation, since inserting n+ 1 in σb cannot create a subsequence of
type 312 and inserting n+ 1 in σu cannot create a subsequence of type 231.

Finally, suppose we insert n in a bar-active space in σb, so that n has a barred entry to its
right. As above, the space immediately left of n is bar-active, but the space immediately right
of n is not, since inserting n+ 1 in that space produces a 231 pattern, which is forbidden.
Similarly, every space to the right of n in σb is bar-inactive in the new signed permutation.
All other spaces which were bar-active in π remain bar-active in the new signed permutation,
since inserting n+ 1 to the left of n cannot create a subsequence of type 312 and inserting
n+ 1 in σu cannot create a subsequence of type 231.
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Combining the observations above, and using the fact that the space between σb and σu
is always bar-active, we find the children of π have 3, 4, . . . , k + 2, f10(π) + 1, f10(π), . . . , k +
3, f10(π) + 1 children, where k is the number of bar-active spaces in σu.

Case Two: All entries in π are unbarred.

First observe that since π avoids 21, we have π = 12 · · ·n − 1, and every space is bar-
active. Now suppose we insert n. As in Case One, the spaces immediately left and right of
n are bar-active in the new signed permutation, the rest of the spaces to the left of n are
bar-inactive, and all spaces to the right of n are bar-active. Therefore the children of π have
3, 4, . . . , f10(π), f10(π) + 1, f10(π) + 1 children.

Observe that in both cases the children of π have 3, 4, . . . , f10(π), f10(π) + 1, f10(π) + 1
children, and the result follows. 2

We conclude this section by describing an isomorphism between the generating tree for
B(T11) and the classical Schröder generating tree.

Theorem 4.7 For each signed permutation π ∈ B(T11), let f11(π) denote one plus the
number of bar-active spaces in π. Then the map π 7→ f11(π) is an isomorphism of generating
trees between the generating tree for B(T11) and the classical Schröder generating tree. In
particular,

|Bn(21, 21, 132, 132)| = rn (n ≥ 0).

Proof. To begin, observe that f11(∅) = 2 and f11(1) = f11(1) = 3, so both trees have the
same first two levels. In view of Lemma 4.1, the quantity f11(π) is the number of children
of π, so it is sufficient to verify these children have the correct labels.

Fix n ≥ 2 and suppose π ∈ Bn−1(T11). First observe that since no forbidden pattern
begins with 2 or 3, the left-most space in π is bar-active. Suppose we insert n into the
left-most space of π. Since 2 does not appear before 3 in any forbidden pattern, the space
immediately right of n in the new signed permutation is bar-active. Since no forbidden
pattern begins with 2, all spaces which were bar-active in π remain so.

Now suppose we insert n in a bar-active space of π other than the left-most space.
Since 132 and 132 are both forbidden, the only bar-active space left of n in the new signed
permutation is the left-most space. But since 2 does not appear before 3 in any forbidden
pattern, the space immediately right of n is bar-active, as are all spaces to the right of n
which were bar-active in π.

Combining the above observations, we find that the children of π have 3, 4, . . . , f11(π), f11(π)+
1, f11(π) + 1 children, and the result follows. 2

5 An Isomorphism to a New Schröder Tree

In this section we enumerate Bn(T12), where T12 = {21, 21, 321, 312} is as given in the
Introduction. As in the previous section, we do this by studying the associated generating
tree. In order to describe our results, we need the following new generating tree.
Definition 5.1 The tilted Schröder tree is the generating tree given by

• Root: (2);
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• Rules: (2)→ (2)(4)

(k)→ (2)(4)(5) · · · (k)(k + 1)(k + 1) for k ≥ 4.

In particular, (4)→ (2)(4)(5)(5).
A preliminary examination of the tilted Schröder tree suggests it has rn nodes on level n.
We prove this next.

Theorem 5.2 For all n ≥ 0, the tilted Schröder generating tree has exactly rn nodes on
level n.

Proof. We use the kernel method. (See [1, 10] for more information on the kernel method.)
For any node ν in the tilted Schröder tree, let level(ν) denote the level of ν and let label(ν)
denote the label of ν. Now let G(x, y) be given by

G(x, y) =
∑
ν

xlevel(ν)ylabel(ν),

where the sum on the right is over the nodes in the tilted Schröder tree. For all k ≥ 2 define
Gk(x) by writing

G(x, y) =
∑
k≥2

Gk(x)yk. (7)

We wish to obtain G(x, 1). To this end, count the children of each node in the tilted Schröder
tree to obtain

G(x, y) = y2 +G2(x)x(y2 + y4) + x
∑
k≥3

Gk(x)(y2 + y4 + y5 + · · ·+ yk + 2yk+1). (8)

Since every node has exactly one child with label 2, and the root has label 2, we also have

G2(x) = 1 + xG(x, 1). (9)

Use (9) to eliminate G2(x) in (8) and use (7) to simplify the result and obtain(
1− xy2

y − 1
− xy

)
G(x, y) = y2 + x(y2 + y4) +

xy2 − xy4

y − 1

+G(x, 1)

(
x2(y2 + y4)− x2y4 + (1− x)xy2

y − 1
− x2y3 − xy3(1− x)

)
.

Now set y =
1 + x−

√
1− 6x+ x2

4x
and solve the resulting equation for G(x, 1) to obtain

G(x, 1) =
1− x−

√
x2 − 6x+ 1

2x
.

Now the result follows from (1). 2

Remark The author thanks an anonymous referee for pointing out that Theorem 5.2 can
also be proved by using [5, Thm. 3.2] with b = r = c = 1, where P and fP (z) are the
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production matrix and the generating function associated with the small Schröder num-
bers. Alternatively, Julian West has found an ‘adoption’ procedure which converts the tilted
Schröder tree to the classical Schröder tree without changing the number of nodes on any
level.

To show that the generating tree for B(T12) is isomorphic to the tilted Schröder tree, we
study the bar-active and unbar-active spaces in a signed permutation which avoids T12. We
begin by characterizing the bar-active spaces.

Lemma 5.3 Fix n ≥ 2 and suppose π ∈ Bn−1(T12). Then the following hold.

(i) If π(n− 1) is unbarred then the right-most space in π is bar-active and all other spaces
in π are bar-inactive.

(ii) If π(n − 1) is barred then the right-most two spaces in π are bar-active and all other
spaces in π are bar-inactive.

Proof. (i) Since no forbidden pattern ends with its largest entry, the right-most space in π
is bar-active. However, if we insert n in any space other than the right-most, then n and
π(n− 1) form a subsequence of type 21, which is forbidden.

(ii) Since no forbidden pattern ends with its largest entry, the right-most space in π is
bar-active. Similarly, since no forbidden pattern ends with its largest two entries barred, the
second space from the right in π is bar-active. Now suppose we insert n in a space which
is not one of the right-most two spaces in π. If π(n − 2) is barred then n, π(n − 2), and
π(n− 1) form a subsequence of type 321 or 312, both of which are forbidden. If π(n− 2) is
unbarred then n and π(n− 2) form a subsequence of type 21, which is also forbidden. 2

Next we characterize the unbar-active spaces.

Lemma 5.4 Fix n ≥ 2 and suppose π ∈ Bn−1(T12). Let σ denote the (possibly empty)
sequence of barred entries at the right end of π. Then the following hold.

(i) If σ is empty then the right-most space in π is unbar-active and all other spaces in π
are unbar-inactive.

(ii) Suppose σ is nonempty. Then a space in π is unbar-active if and only if it is adjacent
to at least one entry of σ.

Proof. (i) Since no forbidden pattern ends with its largest entry, the right-most space in π
is unbar-active. However, if we insert n in any space other than the right-most, then n and
π(n− 1) form a subsequence of type 21, which is forbidden.

(ii) This is immediate, since the only forbidden subsequence whose largest entry is un-
barred is 21. 2

We conclude the paper by using Lemmas 5.3 and 5.4 to give an isomorphism between
the generating tree for B(T12) and the tilted Schröder tree.

Theorem 5.5 For each signed permutation π ∈ B(T12), let g(π) = 2 if π is empty, let
g(π) = 2 if the right-most entry of π is unbarred, and let g(π) denote three plus the number
of barred entries at the right end of π otherwise. Then the map π 7→ g(π) is an isomorphism
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of generating trees between the generating tree for B(T12) and the tilted Schröder generating
tree. In particular,

|Bn(21, 21, 321, 312)| = rn (n ≥ 0).

Proof. To begin, observe that g(∅) = 2, g(1) = 2, and g(1) = 4, so both trees have the same
first two levels, and it is sufficient to show they have the same succession rules.

Fix n ≥ 2 and suppose π ∈ Bn−1(T12). We consider two cases.

Case One: π(n− 1) is unbarred, so that g(π) = 2.

In view of Lemmas 5.3 and 5.4, the signed permutation π has 2 = g(π) children, one of
which is obtained by inserting n at the right end of π and the other of which is obtained by
inserting n at the right end of π. By the same Lemmas, the child obtained by inserting n
has 2 children and the child obtained by inserting n has 4 children.

Case Two: π(n− 1) is barred, so that g(π) ≥ 4.

In view of Lemmas 5.3 and 5.4, the signed permutation π has g(π) children, two of which
are obtained by inserting n and g(π)− 2 of which are obtained by inserting n. By the same
Lemmas, both children obtained by inserting n have g(π) + 1 children, and the children
obtained by inserting n have 2, 4, 5, . . . , g(π) children.

These results correspond with the succession rules for the tilted Schröder generating tree,
and the result follows from Theorem 5.2. 2
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