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Abstract

In 1993 Bonin, Shapiro, and Simion showed that the 8dbr'numbers count
certain kinds of lattice paths; these paths are now calledd8iehmpaths. In 1995
West showed that the Sadér numbers also count permutations which avoid the
patterns 4231 and 4132. Using some technical machinery, Barcucci, Del Lungo,
Pergola, and Pinzani showed in 1999 that a cemjgamalog of the Scluder num-
bers, called the Schder polynomial, is the generating function for a statistic called
the area statistic on Satatér paths and is also the generating function for the inver-
sion number on permutations which avoid 4231 and 4132. In this paper we give a
constructive bijection from Schder paths to permutations which avoid 4231 and
4132 that takes the area statistic on Sctar'paths to the inversion number on per-
mutations which avoid 4231 and 4132.

Keywords: Schroder paths, Schroder permutations, Schroder polynomials, Catalan
polynomials, pattern-avoiding permutations, lattice paths, inversion number
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1. Introduction

1

The Catalan numbe(&,Cy, ... are givenin closed form b@, = 35

also be defined by the recurrence

Co=1,
Ci=3CiCrk  (n21).
k=1

(3", but they may

It is well known thatC, is the number of lattice paths froii®,0) to (n,n) using only
NORTH (0,1) and EAST(1,0) steps which never pass below the line x. We refer to
these paths as Dyck paths. It is also well known thais the number of permutations
of 1,2,...,n which avoid the pattern 312. (See section 2 for definitions.) In [5] Carlitz
and Riordan introduced@analogCn(q) of C, which satisfies

Cnlq) = kz C_1(q)Cnk(q)g< 2 (n>1).
=1

Observe tha€y(1) = C, for n > 0. In [6] Furlinger and Hofbauer showed tha{(q) is
the generating function for the area statistic on Dyck paths and for the inversion number
on 312-avoiding permutations. In [1] Bandlow and Killpatrick provided a combinatorial
proof of this result by giving a constructive bijection from Dyck paths to 312-avoiding
permutations which takes the area statistic to the inversion number.

In [8] Garsia and Haiman generaliz€(q) by introducing a polynomiaCn(q,t)
such thatC,(1,1) = C, andCy(1,q9) = Cn(q,1) = Cn(q); this polynomial is now called
the g,t-Catalan polynomial. Garsia and Haiman conjectured @, t) is the Hilbert
series of the diagonal harmonic alternates and showed that it is the coefficient of the
elementary symmetric functioe, in the symmetric polynomiaDH,(x;q,t), the con-
jectured Frobenius characteristic of the module of diagonal harmonic polynomials. It
is immediate from Garsia and Haiman’s definition tRatq,t) = Cs(t,q). Moreover,
Haglund [9] has found a statistic on Dyck paths, calledttiseatistic, such that,(q,t)
is the generating function for the area ansdtatistics on Dyck paths. One important
open problem is to find an involution on Dyck paths which takes the area statistic to the
t-statistic and the-statistic to the area statistic.

Closely related to the Catalan numbers are the Schroder nuRbdRs, . .., which
are defined by the recurrence

RO = 17
n+1

Rhy1=Rn+ Z Re-1Rn11-k (n>0).
k=1

(No simple closed form foR, is known.) In [3] Bonin, Shapiro, and Simion showed
that R, is the number of lattice paths froti®,0) to (n,n) using only NORTH(O, 1),
EAST (1,0), and DIAGONAL (1,1) steps which never pass below the line- x. We
refer to these paths as Schroder paths. In [13] West showedRghatalso the num-
ber of permutations of ,B,...,n,n+ 1 which avoid the patterns 4231 and 4132. We
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refer to these permutations as Schroder permutations. (For other families of pattern-
avoiding permutations counted by the Schroder numbers, see [10].p-&halogs of
the Schroder numbers, called the Schroder polynomials, are defined by the recurrence

S(9) =1,

n+1

Svi1(a) = Sh(a) + kz Sc1(0) S 1-k(@)d (n>0).
=1

ObserveS,(1) = R, for n > 0. In [2] Barcucci, Del Lungo, Pergola, and Pinzani used

some technical machinery to show ti8atq) is the generating function for a generalized

area statistic on Schroder paths and for the inversion number on Schroder permutations.
The Schroder numbers and Catalan numbers are related by

Ro= ki (an‘ ") Gk (n0)

Moreover, observe that every Dyck path is a Schroder path and that every permutation
which avoids 312 also avoids 4231 and 4132. So if we vigq) as a sum over
Schroder paths then we obtain (a multiple 6f)(q) by restricting the sum to Dyck
paths. Similarly, if we view§,(q) as a sum over Schroder permutations then we obtain
(a multiple of)Cn11(q) by restricting the sum to 312-avoiding permutations.

Our main goal is to find a symmetrig t-Schroder polynomial which generalizes
Cn(q,t). Recently Egge, Haglund, Killpatrick, and Kremer have fourgiaSchroder
polynomial which generalizeSy(q,t), but it is not known whether this polynomial is
symmetric. In this paper we advance on our goal by extending propertiés(of to
Si(g). Specifically, we generalize the work of Bandlow and Killpatrick by giving a
constructive bijection from Schroder paths to Schroder permutations which takes the
area statistic to the inversion number.

In section 2 we give the necessary definitions and background for this paper. In
section 3 we construct a bijection between Schroder paths and Schrioder permutations
and prove that this bijection maps the area statistic to the inversion number. In section
4 we discuss some open problems related to this work.

2. Schroder Number s and Polynomials
The Schroder numbefRy, Ry, ... are defined by the recurrence

Ro=1,
n+1

Rhi1=Ra+ Z Re-1Rn+1-k (n>0) (2.1)
k=1

and form the sequence
{Ra}ne0=11,2,6,22,...}.
A Schroder path is a lattice path iriZ? from (0,0) to (n,n) consisting of steps in
the (0,1) direction (NORTH steps), th€l,0) direction (EAST steps) and thel, 1)
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direction (DIAGONAL steps) such that there are no poifks/) on the path for which
x>Yy. In other words, a Schroder path is a path fr@@n0) to (n,n) consisting only of
NORTH, EAST and DIAGONAL steps that never goes below the diagonal. We write
P, to denote the set of Schroder paths frgdn0) to (n,n). For exampleP, consists of

the paths illustrated below.

s

The Schrdder numbé, is known to count Schroder paths frdih 0) to (n,n), thus
R, = 6. Thelength of a Schroder path is the number of NORTH and DIAGONAL steps
in the path, thus a Schroder pathe P, has lengttn. Schroder paths which contain
no DIAGONAL steps are calle®yck paths and the number of such paths is given by
the Catalan numbet, = %l(znn) The Schrdoder numbers are related to the Catalan
numbers by

This relation can be explained by counting Schroder paths according to how many
DIAGONAL steps they contain. Specifically, for © k < n let D¢ denote the set of
Schroder paths frorf0, 0) to (n,n) which contain exactlk DIAGONAL steps. Clearly

Rh = Sk_o|Dx|, so it is sufficient to showWDy| = (znk’k)cn,k. To do this, observe that

if a Schroder path hasDIAGONAL steps then it has a total ofi2- k steps. To form a
Schrader path witlk DIAGONAL steps, first choose which of then2- k steps will be
diagonal. This can be done [} ¥) ways. Then fill in the remaining steps with a Dyck

path of lengtm —k, which can be done i, _ ways. It follows thatDy| = (Z”k*k)cn,k,
as desired.

Both the Schroder numbers and the Catalan numbers have many other combinatorial
interpretations. See [12, Exercise 6.19, p. 219] for an extensive list of combinatorial
interpretations of the Catalan numbers. See [12, Exercise 6.39, p. 239] for an extensive
list of combinatorial interpretations of the Schroder numbers.

The recurrence (2.1) satisfied by the Schroder number can also be visualized using
the Schroder paths. Far> 2, let

A = {Schrdder paths fror(0,0) to (n+ 1,n+ 1) that first touchy = x at (k, k) }.

In other words, fok > 2, the sety consists of those Schroder paths for whicis the
smallest positive integer such tht k) is a point on the path. In addition, 184 be the
set of paths that start with a NORTH step and then an EAST step ai{ le the set
of paths that start with a DIAGONAL step. Then cleaRy 1 = |A}| + zrk‘i%|Ak|. It
remains to show thafy| = Re_1Rn;1-k and|A}| = Ry.

If a path first touches the diagonal @& k) then it must go from(0,1) to (k— 1,k)
without touching the diagonal point4,1), (2,2), ..., (k—1,k—1). The number of
such paths i&_1. Once the path touchég, k) it must then continue ton+ 1,n+ 1)
without going below or to the right of the diagonal. The number of such patRs.is k.
Thus fork > 2 we have|Ay| = Rc_1Rn+1-k. Paths inA; start with a NORTH step
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followed by an EAST step and then can take any valid path ftbn) to (n+1,n+1).
The number of such pathsi. (Note: R, = RoR, sinceRy = 1.) Paths inA] start with
a DIAGONAL step and then can take any valid path frginl) to (n+1,n+1). Again
there areR, ways to do this s¢A;| = R,. Therefore,

n+1 n+1

Ros1=[A1+ Y [Al =R+ Y Re1Ruike
=1 =]

For example, ifh = 9 andk = 3, then any path iz must go from(0,0) to (0,1), then
take some path fron0, 1) to (2,3) without touching(1,1) or (2,2). Since the chosen
path is inAg, it must then go fron{2, 3) to (3, 3) and then it can take any valid Schroder
path from(3,3) to (10,10). One example of such a path is illustrated below.

{10,100

[2,3)
(3,31

0,10
[a,00

The Schrdder numbers also count certain kinds of pattern-avoiding permutations. A
4132-avoiding permutationt € S, is a permutatiom= TR - - - T, containing no subse-
quencet T, Withi < j <k < I such thatg > 15 > 17 > 1. That is, we saytavoids
4132 whenever it contains no subsequence whose elements are in the same relative or-
der as 4132. Ai231-avoiding permutation is defined similarly. &chrdder permutation
is a permutation that is both 4132- and 4231-avoiding. The Schroder nuRploeunts
the Schroder permutations $ .1 [2]. (See [10] for other sets of pattern-avoiding per-
mutations counted by the Schroder numbers.)

A statistic on a permutation, lattice path, or other combinatorial object counts some
property about that object. Thaversion statistic (or inversion number) of a permuta-
tion g € S, is defined by

inv(o) = 1
1§;;J}J§n
For example, ifo = 743216598, theinv(ag) = 14 since each of the pairs 21, 31, 41,
71,32,42,72, 43,73, 74, 65, 75, 76, and 98 contributes 1 to the sum. The generating
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function for the inversion statistic 08, is given by

qinv(c) )
2,

In addition to defining statistics on permutations, we can define statistics on Schroder
paths. Given a Schroder pathe P,, the area statistic,a(tr), is the number of full
squares and upper half-squares that lie below the path and completely above the diag-
onal. For example, for the Schrdder path shown below the squares counted by the area
statistic are shac

{10,100

AT

(0,0

The generating function for the area statistic on Schroder paths is given by

3 @ =5
TiEkn

and is known as the Schroder polynomial [3]. Specializing 1 in the Schroder poly-
nomial gives the usual Schroder numBgmwhile restricting the sum to paths using only
NORTH and EAST steps (Dyck paths) gives a multiple of th€atalan polynomial.
Barcucci, Del Lungo, Pergola, and Pinzani [2] showed that

n+1

Svi1(a) = S(a) + kz Sc1(0)She1-k(@)d (n>0). (2.2)
=1

To visualize this recurrence, use notation similar to our explanation of the recur-
rence for the Schroder numbers. That is, kor 2, let Ay denote the set of Schroder
paths for whichk is the smallest positive integer such thiktk) is a point on the path.

In addition, letA; denote the set of paths that start with a NORTH step and then an
EAST step and lef\; denote the set of paths that start with a DIAGONAL step. For
1<k<n+1,let

Ada)= 5 g™

TIEAK

and
Ag) = 5 ™.

/
TeA]
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Clearly,
n+1

Sra(@) = Ay (@) + Y Aa).
K=1
Then to understand the Schroder recurrence in (2.2), it is necessary to understand why

A(9) = Sc-1(0)Shi1-k(@)a

and why
AL(a) = S(a).

Since a path ir first touches the diagonal &k, k) it must go from(0,1) to (k— 1,k)
without touching the diagonal point4,1), (2,2), ..., (k—1,k—1). The number of
such paths i and the sum of their weights &(q). To these paths we must add
the k half-squares just above the diagonal fr¢®0) to (k,k). Thus the parts of the
paths from(0,0) to (k,k) in A, give us a weight 0§Sc(q). From(k,k) the paths must
continue on tdn+ 1,n+ 1) without going below the diagonal. These paths have weight
Si+1-k(Q), giving a total weight for paths ify of

A@) = 9*Sc-1(A) Sh1-k(Q).-

Any path inA; starts with a DIAGONAL step, which has a weight of zero, and then
continues on fronf1,1) to (n+1,n+ 1), so the total weight of these paths is j&(q).

Thus
n+1

Sii1(a) =S(a) + kz 0“Sc1(a)Shi1-k(0).-
=1

Using the previous example of a pathAg, the additional 3 half squares of weight
q? are shaded in black in the diagram below.

10,100

2,2
(3,3

(1) g

I:DJD)
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3. A Bijection Between Schroder Pathsand Schroder Per-
mutations

Before stating and proving our main theorem, we will describe a well-defined method
for writing any permutatioro € S, as a product of adjacent transpositions which will
prove useful.

Let 0 € S, and lets denote the transposition that interchanges the number in po-
sitioni with the number in positiom+ 1 when applied ta. Write o as a product of
adjacent transpositiorss by first determining a specific sequence of adjacent transpo-
sitions which, when applied to, will give the identity permutation. Theo can be
represented by the inverse of this sequence of transpositions.

To determine the specific sequence of adjacent transpositions, supgsepo-
sitioni in 0. Thens,_1S-2---S+15 (applied right to left) moves tha to positionn
and leaves the relative order of the numbers 1 throughl unchanged. Now locate
n— 1 in the resulting permutation. Suppose- 1 is in positionj. Then the sequence
Sh—25-3- - Sj+1Sj moves then— 1 to positionn— 1. Continuing in this manner will
give the identity permutation. Themncan be represented as the inverse of this sequence
of transpositions. Sincg = id, it follows thatgfl =5 so the inverse of this sequence
of transpositions is the same sequence written in reverse order. dTlBusepresented
by a product of adjacent transpositicaavhose subscripts form a series of increasing
subsequences, i.@1,= 0102 -- 0} with j < nsuch that eacb; is a product of adjacent
transpositions whose subscripts are strictly increasing. In this representat®the
minimum number of such subsequences.

For example, let

0=231687951014

Thensg moves the 10 to the last position, giving
$(0)=23168795410

Nextsgs; moves the 9 to the 9th positios;ssss moves the 8 to the 8th positiogsss
moves the 7 to the 7th positiogssy, moves the 6 to the 6th positios; moves the 5 to
the 5th position, the 4 is already in the 4th positisnmoves the 3 to the 3rd position,
ands; moves the 2 to the 2nd position. Thercan be represented as the inverse of this
sequence of transpositions, so

0=% /5% /%7 / S$% /%S /9 / 2/ s

(The symbol/ has been added above only as a delimiter for the sake of readability.)
In this example, o = 0102 ---0g whereo; = S, 02 = S/, 03 = $5%57, 04 = SS6,
Os = 4S5, 0 = &4, 07 = S, andog = Sy.
We now use this method of writing a permutation as a product of transpositions to
describe a functiori from P, to the set of Schroder permutations3p, 1. This function
will turn out to be a bijection which takes the area statistic to the inversion number.
Supposetis a path inP,. Then for each lower half-square below the path that lies
at the top of columnj, draw a diagonal arrow from each square in colujmnl and
row k to the square in columfpand rowk — 1, for eachk > j. For example, ifrtis the
path in the picture below, then draw the diagonal arrows as illustrated.
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{10,100

e

(0,0

Label shaded full squares and upper half-squares on the diagonal vetlif #ime square

is in columnj. Then leto; be the sequence gf's with decreasing subscripts obtained

by reading the top row of squares below the path from right to left, writing;aior

each shaded square or upper half-square in coljinifrthere is a diagonal arrow at the

end of rowk in columni + 1, follow the diagonal arrow down to the square in rlw 1

and columni and continue to read the sequencesd in shaded squares from right

to left. When there are no more squares to the left that lie under the path or no more
diagonal arrows at the end of the row, thenis complete. Follow the same process

to obtainoy, starting with the row of shaded squares that lies below the topmost row.
Filling in the examnle from ahove with the corres’s we obtain the following picture.

{10,100
/TR
It
=

Iy}
n

L
m

L
-a

N
(]

n

ml.l'l
L

L
Ly

| n
=
n

=

L

g

5 o
=
(0,0

From this picture we find thadi; = $1059%S7, 02 = 985755, 03 = S1S%6S5N4, 04 =
SN, 05 = S5, Og = S5 ando; = §.

For eachi, let o] be the sequence &’s in g; written in reverse order. In the
above exampley; = $75S9S10, 05 = 556575650, 03 = 4S55657, 0 = 4S5Ss, O = 45,
0z = s1S ando’, = s;. We definef (1) € Sy;1 by writing f(1m) = 0705--- 0. In the
example abovef () =32181071164509.
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Lemma 1. If tisa Schroder path then f (11) isa Schroder permutation.

Proof. We argue by induction om, the length of the Schrdder path. The result is
immediate whem = 1, since 12 and 21 are both Schroder permutations.

Now assume that iftis a Schroder path of length— 1 then (1) is a Schroder
permutation inS,. Let ftbe a Schroder path of length If there are no squares or
upper half-squares under the path in the top row, thenapsftto a permutation with
n+1inthe(n+1)st position. In this case, it is enough to check that the permutation in
positions 1 througim is a Schrdder permutation. By induction, the path fr@@n0) to
(n—1,n—1) maps to a permutation i, that is a Schroder permutation, thus adding
n+ 1 to the end of the permutation still gives a Schroder permutation.

Suppose there exist squares or upper half-squares under the Schrodéripath
rown. Letor = ss—1---SjSj—1---S be the sequence of transpositions obtained when
reading shaded squares from right to left starting with the top row, as in the definition
of f. Removing the squares associated with these transpositions from the Schroder
path leaves a Schroder path of length- 1 which by induction maps to a Schroder
permutation inS,. Let a denote this permutation if,. It remains to check that
S---Sj—1Sj - Sh-1S(a(n+1)) is 4132 and 4231-avoiding, i.e. a Schroder permuta-
tion.

Suppose the permutatienends in(n-k+1)(n-k+2)- - - (n-1) n andn-k is in position
i in a withi <n—k— 1. Then the element in position— k of a is a number less than
n— k. With this in mind, we will make use of the following result.

Lemma2. Thepermutations; - -Sj_1S;j - - - Sh—1Sn(a(n+ 1)) canfail to be4132 or 4231
avoiding only if n+1 moves two or more positionsto the left of n-k.

Assuming for the moment that Lemma 2 holds, it is enough to shownthhtnoves
at most one position to the left ofk, for n-k defined as above.

Recall thatf (7)) = 5 - - - Sj—1Sj - - - Si—1Sn(a(n + 1)) for somei. If i > n—k—1, then
S --- S can moven+1 at most one position to the left ofk, sincen-k is in positionl
in a with | < n—k—1. Thus the resulting permutation is both 4132 and 4231 avoiding
and sof (1) is a Schroder permutation.

Supposé < n—k—1 and letn-k be in position in a. Since(n-k+1)(n-k+2)- - - (n-
1)n remain fixed ina, thens, k. 1...5-1S correspond to upper half-squares on the
diagonal in the Schroder path asgd  corresponds to the full square in column- k
and rown—k+ 1in the Schroder path. The remainigg. . s, k_1 also must correspond
to full squares in the Schroder path. However, each of these full squares must have either
a full square or an upper half-square below it, sinceorresponds to a Schroder path.
Thusi > | and san+1 can move at most one position past kin f (f1). Thereforef (1)
is a Schroder permutation. |

We now give a proof of Lemma 2.

Proof. (of Lemma 2) Suppose..n+1...i...k...j... forms a 4132 or 4231 pattern
for somek < n—k. If n-k is to the left ofi, then...n—k...i...k...j... would have
formed a 4132 or 4231 pattern é buta is a Schroder permutation so it avoids these
patterns. Iin-k is between andj then...n+1...i...n—Kk...j... isa4132 or a 4231
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pattern. In this case)+1 is two or more positions to the left af-k. If n-k is to the

right of j, then...n+1...i...n—k...l... isa 4132 or a 4231 pattern, whdrés the
element in positiom — k sol < n—k. Again in this casen+1 is two or more positions
to the left ofn-k. |

To showf is a bijection, we describe its inverse map. To do this, suppose we are
given a Schroder permutatiam Use the method described at the beginning of this
section to writeo as a product of transpositions, obtainimg= 005 - - - 0. Recall that
eachof is a subsequence of adjacent transpositions with increasing subscripts. For each
i, if o] has lengtH and ends wittsy, then shade in the squares#f in the mth row
and in columnsn throughm— 1 + 1. For example, if the given Schroder permutation
iS0=342186111095 7 thed = $755510575859S7S85556S7S5 3515251 and the
shaded squares are as in the following picture.

7

&

[ 7

7

To obtain a Schroder path from the diagram, we slide certain of the shaded squares
down, using the following procedure.

(1) Find the right-most column containing an unshaded square or upper half-square
with a shaded square above. Choose the highest such square or half-square in the
column.

(2) Shift all of the shaded squares which are both above and weakly to the left of the
chosen unshaded square or half-square down by one square. If the area chosen
is a half-square, then the chosen half-square becomes shaded and the top shaded
square in its column becomes a shaded lower half-square.

(3) Repeat steps 1 and 2 until there are no unshaded squares or upper half-squares
below a shaded square or half-square.

Once the sliding procedure is complete, we defi(®) to be the Schroder path atop
the resulting shaded region. In our example we obtain the path illustrated below.
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The following result concerning the sliding procedure above will be useful.

Lemma 3. Suppose o is a Schroder permutation. In step 1 of the sliding procedure
above, the unshaded area selected will always be an upper half-square on the diagonal.

Proof. Arguing by contradiction, suppose at some stage the unshaded area chosen is a
square. Then the part of our diagram surrounding this square looks as follows.

1

If the transpositions corresponding to the top row of this picturesgre. .. sy then

the transpositions corresponding to the second rovsare k- . - Sm—1 for somek such
that 0< k < | —1. These two rows of transpositions will produce a pattern of type
m+21ambin o, wherea<m—1andb < m-1. If a< bthen this is a 4132 pattern.

If b < athen thisis a 4231 pattern. In either case, we have a contradiction. |

Lemma 4. Let f and g be the maps described above. If Ttis a Schroder path then
g(f(m) =1 If o isa Schroder permutation then f (g(o)) = o. In particular, g = f 1.

Proof. Supposeo is a Schroder permutation, and that= o7 ...0x when written as

a product of transpositions as previously described, in which eads a product of
transpositions with increasing subscripts. By the first part of the constructig(oof

the stringo; may be written in the shaded squares and upper half-squares im row
of the diagram obtained before applying the sliding procedure. By Lemma 3 and the
construction off, these strings are never broken under the sliding procedure involved
in the construction of. The result follows. |

Lemma 5. Suppose o is a permutation with k inversions. Then when g iswritten as a
product of adjacent transpositions as described then o has exactly k termsin the prod-
uct. In other words, every transposition in the product representation of ¢ corresponds
toaninversionin o.
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Proof. Suppose = 0103 - - - 0x when written as a product of transpositions in the man-
ner described, in which eadh is a product of transpositions with increasing subscripts.
Suppose; = Sjsj+1---S. Then this sequence of transpositions repeatedly interchanges
the position ofl + 1 with the element to the left df+ 1. By construction the element

to the left ofl + 1 is always less thalht+ 1, so each transposition introduces exactly one
inversion. |

Theorem 1. Thefunction f isabijection from Schr dder pathsto Schrdder permutations
that maps the area statistic to the inversion number.

Proof. It is immediate from Lemma 4 that is a bijection. It follows from Lemma 5
and the construction of that f maps a Schroder path with area statigtto a Schroder
permutation with inversion numbér |

4. Open Problems

As yet, no generalization of thg t-Catalan polynomial to &,t-Schroder polynomial
Si(g,t) such tha§,(q,1) = Si(1,9) = Si(g) andSh(g,t) = Si(t,q) is known. However,
Egge, Haglund, Killpatrick, and Kremer have recently fourtessatistic that is equidis-
tributed with the area statistic on Schroder paths. In other wor@s(dft) is the gener-
ating function for the area statistic and this nestatistic on Schroder paths frof@,0)
to (n,n) thenS,(g,1) = $y(1,9) = Si(q). Itis not known whethef,(q,t) = Si(t,q).
The problem of finding an involution on Dyck paths frdi® 0) to (n,n) which reverses
the area antkstatistics also remains open.
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