THE JACOBI-STIRLING NUMBERS
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ABSTRACT. The Jacobi-Stirling numbers were discovered as a result of a problem involving the
spectral theory of powers of the classical second-order Jacobi differential expression. Specifically,
these numbers are the coefficients of integral composite powers of the Jacobi expression in La-
grangian symmetric form. Quite remarkably, they share many properties with the classical Stirling
numbers of the second kind which are the coefficients of integral powers of the Laguerre differential
expression. In this paper, we establish several properties of the Jacobi-Stirling numbers and its
companions including combinatorial interpretations, thereby extending and supplementing known
recent contributions to the literature.

1. INTRODUCTION

The Jacobi-Stirling numbers, defined for n,j € N:={1,2,3,...} by

{”} - i(—mj (a+B+2r+ ) (a+B+r+Dr(r+a+5+1)"
o8

)

1.1 =
L, T FG—at 847 +7+2)
were discovered in 2007 [I1] in the course of the left-definite operator-theoretic study of the classical

second-order Jacobi differential expression

(1.2) boplyl(z) = My(z) (x € (—1,1)),
where
1

(1.3) logly)(x) := W (( —(1— x)ourl(l + x)ﬁ+1)y/($))/ +k(1—2)*(1+ :r)ﬁy(:n))

= (1 =2y (@) + (a = B+ (a+ B+ 2)2)y (x) + ky(x) (z € (~1,1)).

Here, we assume that o, > —1, k is a fixed, non-negative constant, and wq g(x) is the Jacobi
weight function defined by

(1.4) wep(x) = (1—-2)*1+2)" (€ (-1,1)).

The Jacobi-Stirling numbers have many properties similar to those of the classical Stirling num-
bers of the second kind, and yet their origin in differential operators is somewhat unusual. Indeed,
generalizations of the Stirling numbers are usually defined by triangular recurrence relations of the
form

S(n,k)=5n—-1,k—1)+W(n,k)S(n—1,k),
where W(n, k) is a weight function. Note that the Stirling numbers of the second kind have
W (n, k) = k, while the Stirling numbers of the first kind have W (n, k) = n—1. Most generalizations
take W (n, k) to be a linear function of n and/or k, but in our situation W(n, k) is a quadratic

Date: Submitted: December 19, 2011; Revised Version Submitted: July 30, 2012.
1991 Mathematics Subject Classification. Primary: 05A05, 05A15, 33C45 Secondary: 34B24, 34105, 47E05.
Key words and phrases. Jacobi-Stirling numbers, Legendre-Stirling numbers, Stirling numbers, Jacobi polynomials,
left-definite theory.
The first author is partially supported by National Security Agency Grant H98230-12-1-0205.
1



2 GEORGE E. ANDREWS, ERIC S. EGGE, WOLFGANG GAWRONSKI, AND LANCE L. LITTLEJOHN

function (see Theorem below). The literature on generalizations of Stirling numbers is too vast
for us to succinctly summarize it here, but the interested reader may wish to begin with [I3]. Two
excellent sources for the Stirling numbers of the second kind, and their properties, are the recently
updated handbook [1], edited by Olver, Lozier, Boisvert, and Clark, as well as the classic text of
Comtet [0, Chapter V]. Furthermore, Comtet further generalized the classical Stirling numbers in
[7.

This manuscript may be viewed as a continuation of the combinatorial results obtained in [2],
[3], and [8]; each of these papers deals exclusively with various properties of the Legendre-Stirling

numbers {PST(«LJ )}, a special case of the Jacobi-Stirling numbers. Indeed, by definition, PSTSJ ) =

{?}00. The Jacobi-Stirling numbers have generated a significant amount of interest from other

researchers in combinatorics. In this respect, we note that the Legendre-Stirling numbers appear in
some recent work [5] related to the Boolean number of a Ferrers graph; these authors also show that
there is an interesting connection between Legendre-Stirling numbers and the Genocchi numbers of
the second kind. Our present paper can also be contrasted with recent work of Gelineau and Zeng
[12], who present an alternative approach to the combinatorics of the Jacobi-Stirling numbers. In
a parallel development, Mongelli has recently established the total positivity of the Jacobi-Stirling
numbers in [17]. In addition, in the recent manuscript [I8] Mongelli shows that the Jacobi-Stirling
numbers are specializations of the elementary and complete homogeneous symmetric functions; he
also obtains combinatorial interpretations of a wide class of numbers which include the Jacobi-
Stirling numbers as special cases.

The contents of this paper are as follows. In Section [2] we briefly review the Jacobi-Stirling num-
bers from the original context of left-definite theory. Section [3| deals with a comparison of various
properties of the classical Stirling numbers of the second kind and the Jacobi-Stirling numbers. The
proofs of many of these properties are similar to the proofs given in [3] so the proofs in this section
will either be brief or omitted completely. In Section [ we give a combinatorial interpretation of the
Jacobi-Stirling numbers in terms of set partitions with a prescribed number of blocks. As with the
classical Stirling numbers there occur, in a natural way, corresponding (unsigned) Jacobi-Stirling
numbers of the first kind (see [8], [12], and [18]). As a result, we sometimes refer to the Jacobi-
Stirling numbers as the Jacobi-Stirling numbers of the second kind. In Section [5| we study the
Jacobi-Stirling numbers of the first kind and prove several properties of these numbers which are
analogues of properties of the classical Stirling numbers of the first kind. In particular, we prove
a reciprocity result connecting the Jacobi-Stirling numbers and the Jacobi-Stirling numbers of the
first kind. In Section [6] we give two combinatorial interpretations of the Jacobi-Stirling numbers of
the first kind in terms of ordered pairs of permutations with prescribed numbers of cycles.

Notation. It is clear from that {7;}& 5 is a function of o + 8 + 1, rather than of o and 3

individually. With this in mind, we might wish to follow Gelineau and Zeng in setting z = a+5+1.
It turns out, however, that it is more natural for our investigations to view these numbers as a

1
function of v where v = % Hence, we write {?}7 to denote the Jacobi-Stirling number {7;}& 2
where 2y — 1 = a+ 4+ 1. With this notational change, we see from (1.1} that

(1.5) {”} i:(_l)r-&-j (2r+2y=DP(r+2y = Dlr(r+2y 1"

il = PG =)D +7+27)

Observe that the numbers {?}1 (that is, v = 1) are precisely the Legendre-Stirling numbers. The
following table lists some Jacobi-Stirling numbers for small values of n and j.
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n/j |j=0|j=1]j=2 Jj=3 Jj=4 Jj=95
n=0]1 0 0 0 0 0
n=1]0 1 0 0 0 0
n=2|0 2y 1 0 0 0
n=30 4v7 16y +2 1 0 0
n=4|0 8y3 2872 +20y +4 127+ 8 1 0
n=>5]|0 167* | 12073 + 13692 + 567 + 8 | 10072 + 140y +52 | 20y +20 | 1

TABLE 1. The Jacobi-Stirling numbers

A similar table, with the Jacobi-Stirling numbers in terms of o and S, can be found in [I1]. In
[12], the authors have a table of Jacobi-Stirling numbers given in terms of z; compare also to the
results in the contribution [4] on Dowling lattices and r—Whitney numbers. We show below, in
Theorem (iii), that the Jacobi-Stirling numbers satisfy a certain triangular recurrence relation
that allows for a fast computation of these numbers.

As with the classical Stirling numbers there occur, in a natural way, corresponding (unsigned)
Jacobi-Stirling numbers mv of the first kind (see Section |5| below; see also [§], [12], and [1§]). In

view of this, we occasionally will call {?}7 the Jacobi-Stirling numbers of the second kind.

For the remainder of this manuscript, we use the notation Ny := NU{0}.

2. BACKGROUND

We give a brief account in this section on the origin of the Jacobi-Stirling numbers. They were
discovered in a certain spectral study of the Jacobi differential expression ; for specific details
see [11].

When

A= N=r(r+a+p+1)+k (reNy),
one classic solution of the Jacobi differential equation is

T+«
r

(2.1) y(z) = PP () = < )F(—r,l—l—a—l—ﬂ+r;1+a;1;x> (r € Np),

where P,n(a’ﬁ ) (x) is the Jacobi polynomial of degree r as defined in the classic text of Szegé [19,
Chapter IV].
The most natural setting for an analytic study of (1.2]) is the Hilbert function space

L*((=1,1);wa,p(2)) = L7 5(~1,1),
defined by

(22) L2 4(—-1,1):= {f ((-1,1) = C

1
f is Lebesgue measurable and/ ]f\Qwa,gda: < oo},
1

with inner product

1
(23) (. 9)ap == / @)@ (f.g € L s(-1D).

In fact, the Jacobi polynomials {P,Sa’ﬁ ) }:10 form a complete orthogonal sequence in L?X B(_l’ 1).

Furthermore, in this space (called the right-definite spectral setting), there is a self-adjoint operator
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Al@B) ip Li’ﬁ(—l, 1), generated by £, g[-], that has the Jacobi polynomials {PT(O"B)}S‘;O as eigen-
functions. Special cases of these polynomials include the Legendre polynomials (a = 8 = 0), the
Chebyshev polynomials of the first kind (« = 8 = —1/2), the Chebyshev polynomials of the second
kind (v = = 1/2), and the ultraspherical or Gegenbauer polynomials (o = f3).

The operator A(®#) is an unbounded operator but it is bounded below by kI, where I denotes
the identity operator, in L2 ( 1,1). Consequently, for k& > 0, a general left-definite operator
theory developed by thtlejohn and Wellman [16] applies. In particular, there is a continuum of

Hilbert spaces {Ht (@) }t>0 where Ht( @8 s called the " left-definite Hilbert space associated with
the pair (L2 ( 1,1), A(A)). From the viewpoint of the general theory of orthogonal polynomials,

it is remarkable that the Jacobi polynomials {P(a B )}OO form a complete orthogonal set in H, (e8)
for each t > 0. The upshot of the left-definite analysis of (| is that, for n € N, the mtegral
composite power £, 5[] generates the nth left-definite inner product (-, )%a A n [11], the authors
prove the followmg result which is the key prerequisite to establishing the left definite theory of
the Jacobi differential expression; it is in this result where the Jacobi-Stirling numbers are first

introduced.

Theorem 2.1. Let n € N. The n'* composite power of the Jacobi differential expression (1.3)), in
Lagrangian symmetric form, is given by

1 - () - o (4)
n _ _1i (Y _ ot B+i,,(4) _

24 bl = L — jz; D7 (k) (1 = 2)™H (14 2) (@) (@ e (-1,1)),
where the coefficients cy) (n,k) (j =0,1,...n) are nonnegative and given by

nkyi=q0 RO

k" if k>0
and
" ifk=0
) o= 4

S (Y kT ik >0

In particular, when k =0,

()
(25) €0 lyl(x) = Z ({} (- x>a+j<1+x>ﬁ+jy<f‘><x>> (x € (~1,1)).

w
a:ﬁ =1

Furthermore, {]} is the coefﬁciemf of "7 in the Maclaurin series expansion of
v

j ) 1
(2.6) H 1—m(m+2y— 1z <|$| < ](7—!—2'7—1))

m=1

From ([2.6), we see that we can extend the definition of these numbers to include the initial
conditions

n 0
(2.7) { } = 0n0 and{.} = 0j,0-
0 8l J v

The original motivation in the discovery of the Jacobi-Stirling numbers can be seen from the
rows in Table |l Indeed, the numbers in the n** row of Table [1| are precisely the coefficients of the
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n'" power of the Jacobi differential expression £, s[-]; for example,

w5 ()63 p[y) (@) = —1(1 = )31 + )73y ()"
(67 +2)(1—2) (1 +2) 2y (@) — (421 — )™ (1L 2) )y (@)

On the other hand, the columns in Table (1| demonstrate the rational generating function (2.6) for
the Jacobi-Stirling numbers. For example, reading along the column beginning with j = 2, we see
that

H +2 o =14 (67 + 2)t + (2872 + 207 + 4)t* + (120~ + 13672 + 567 + 8)t3 +.. ..
T Y —

r=1

3. JACOBI STIRLING NUMBERS VERSUS STIRLING NUMBERS OF THE SECOND KIND

The Jacobi-Stirling numbers {?}V are similar in many ways to the classical Stirling numbers of

the second kind, which we denote by {?} As a first point of comparison, we note that, as reported
n [I6] (see also [9]), the Stirling numbers of the second kind are the coefficients of the integral
powers of the second-order Laguerre differential expression m|[-], defined by

mlyl(z) = ——— (—2*"e Y () (2 € (0,00)).
Indeed, for each n € N,
n (9)
(3.1) (o) = >0y ({?}xa“wy@(m) ;
compare ) and (| -

The followmg table lists various properties of the Stirling numbers of the second kind.

Property Stirling Numbers 2nd Kind

J o)
1 n
Rational GF = E n=J
atlona 71_[1 1 — 2 Z {j}%

—1
Vertical RR {n} {T }j"_r
7j—1

Triangular RR {? { } + j{n 1}
) = b {7} =950
Horizontal GF " = Z {?}(m)J, where

j=0
(x)j=a(z—1)...(x—j+1)
Forward Differences | AF ({?}) >0 for (n > j and k € Np)
TABLE 2. Properties of the classical Stirling numbers of the second kind
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Regarding the ‘forward difference’ entry in the above Table, recall that the forward difference of
a sequence of numbers {z,}7° is the sequence {Ax,}22, defined by

Azp = Tpi1 — 2,  (n € Np).

Higher-order forward differences are defined recursively by

k
AFz, = AN 1g,) = <k> 1)1 k—m-
(@) =3 ()0
Comtet [7, Propostion, p. 749] develops the forward differences inequalities for the Stirling numbers.
We now state a theorem that has comparable properties of the Jacobi-Stirling numbers; the
reader will immediately observe the close similarities between Stirling numbers of the second kind
and Jacobi-Stirling numbers. The details and proofs of most of these properties are given in [3] for
the case of the Legendre-Stirling numbers (o« = § = 0). Since the proofs are almost identical, we

will only sketch proofs when necessary.
Theorem 3.1. The Jacobi-Stirling numbers {?}7 have the following properties.
(i) (Rational Generating Function) For all j € N,

Ill-mr¥gv—-ww::§§{?}yﬂljzzié{?}wﬂlj Qx%<ju*€;“”>;

n=0 n=j

i particular, for each n,j € N, {7;}7 s a polynomial in v with nonnegative integer coeffi-
cients.
(ii) (Vertical Recurrence Relation) For all n,j € Ny,

{?}7 N z”: {; _ 1}7(1‘(1‘ + 2y — 1))

r=j

(iii) (Triangular Recurrence Relation) For alln,j € N,

U= suemog"

and for all n,j € Ny,
n 0
{O} B 5”’0 { } B j70.
gl J)y

(iv) (Horizontal Generating Function) For all n € Ny,
n . n
=3 {0} @,
J)y

1s the generalized falling factorial defined by

where <x>§7)

0.1 AN
(3.2) ()" = {an_lo(x —m(m+2y-1)) ifjeN
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(v) (Forward Differences) For all k € Ny (and A acting on the variable n),

Ak<{j}”> >0 (n> ).

(27)™

Proof. The rational generating function, given in (7), is discussed in Theorem the complete
proof of (i) is given in [II, Theorem 4.1]; we also refer to [I2, Section 4.2] where the authors
determine this rational generating function in a different and simple way. The vertical recurrence
relation in (7i) follows from (i); in fact, the proof is similar to that given in the Legendre-Stirling
case which can be found in [3, Theorem 5.2]. Since the triangular recurrence relation is important
in the combinatorial interpretation of the Jacobi-Stirling numbers, which we discuss in the next
section, we give a proof of (zi7). The initial conditions given in (iii) are part of the definition of
{?}7, given in (2.7). From (i), we see that

i {j ﬁ 1}7515”]'“ =(1—-j+2y-1)x) i {le}fnj;

n=j—1 n=j

shifting the index on the sum on the left-hand side, and carrying out the multiplication on the
right-side yields

S22 e =t e n {0 e
n=j Ty n=j Ty n=j J) 5
. (n n—j (n—1 n—j
=> 3 A" 2y -1 b
n=j J v n=j J vy

and this implies (¢i7). The proof of (iv) is similar to the proof of the horizontal generating function
for the Legendre-Stirling numbers given in [3, Theorem 5.4]. The proof of (v) is very similar to the
proof given in [3, Theorem 5.1] in the case of the Legendre-Stirling numbers. (|

For a different approach to parts (i), (iii), and (iv), see [12].

From Table [3] and Theorem [3.1] observe that the rational generating functions for the Stirling
numbers of the second kind (which we again note are connected to powers of the Laguerre differential
expression in ) and the Jacobi-Stirling numbers (associated with the powers of the Jacobi
differential expression in ) involve, respectively, the coefficients r and r(r + o + f + 1) in
the denominators of these products. Remarkably, and somewhat mysteriously, these coefficients
are, respectively, the eigenvalues that produce the Laguerre and Jacobi polynomial solutions of
degree r in, respectively, the Laguerre and Jacobi differential equations. Computing the integral
composite powers of both the Laguerre and Jacobi differential equations is entirely algebraic, and
one would not initially expect these calculations to involve spectral theory. Furthermore, each self-
adjoint operator in Li’ B(_l’ 1) generated by the Jacobi differential expression ¢, g[-] has a discrete
(eigenvalues) spectrum only. It is natural to ask why the rational generating function specifically
involves the eigenvalues {r(r +a + 8+ 1)}22, associated with the operator A(*#) (from Section

that has eigenfunctions {P,Sa’ﬁ ) e and not the set of eigenvalues of another self-adjoint operator.
It seems that there is an interesting connection here that deserves further attention.

The last point that we make in this section is a connection between Legendre-Stirling numbers
{?}1 and the classical Stirling numbers {7;} of the second kind. In [3| equation (3.1)], the authors
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prove that

{1 = i S ()G m 1w

It follows that

z=y=0

n 92n 1 & 27\ .
= —_1)ym (J—m)z+(j+1-m)y
{j}l @ 21 2= ><m>e
1

a2n . . .
— Jr+(+Dy (1 _ ,—(z+y))2j
@)1 (@) (Oy) (=)
Le—me—(a’—l)yw
(Ox)"(9y)"™ (25)!
a2n g —(ie
ey

where ¢;(-) is the vertical generating function for the Stirling numbers of the second kind; that is,

r=y=0

z=y=0

)
z=y=0

= n! 4!
Continuing, we find that
n o2 . .
e e gy (a4 y)
{] }1 (ax)n(ay)n ’ z=y=0

() SO ) (@) o)

= Z @ <n> (=G = 1) (=)" 65 (0)

z=y=0

v,u=0 K
-5 ()00}

Using the forward difference operator, this latter formula for the Legendre-Stirling numbers may
be written in the compact form

(3.3) {T}l = A"{Z} — gn-1

n {3}
(3-4) { } = (- D) ALAY

il G-
with the obvious meaning of A, and A,,. It would be interesting to see if there is a similar connection
between the Stirling numbers of the second kind and the Jacobi-Stirling numbers.

when j > 2,
z=y=0

4. A COMBINATORIAL INTERPRETATION OF THE JACOBI-STIRLING NUMBERS

The Stirling number of the second kind {’;} is the number of set partitions of {1,2,...,n} into
7 nonempty blocks. That is, {?} is the number of ways of placing n objects into j non-empty,
indistinguishable sets; for a full account of their properties, see [I] and Comtet [6l Chapter V].
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With this in mind, it is natural to ask for a similar combinatorial interpretation of the Jacobi-
Stirling number {’;}7 Indeed, Andrews and Littlejohn [2] have generalized the notion of a set

partition to give a combinatorial interpretation of the Legendre-Stirling number {?}1; one might
call Andrews and Littlejohn’s generalized set partitions Legendre-Stirling set partitions. More
recently, Gelineau and Zeng [12] have found a statistic on Legendre-Stirling set partitions which
allows them to interpret {?} as a generating function over Legendre-Stirling set partitions. In

this section we generalize Legendre-Stirling set partitions still further, to obtain objects we will call
Jacobi-Stirling set partitions. When v = 1 it will be clear that the Jacobi-Stirling set partitions
are in fact Legendre-Stirling set partitions, and we will show that for any positive integer -, the
Jacobi-Stirling numbers count Jacobi-Stirling set partitions.

To describe a combinatorial interpretation of the Jacobi-Stirling number {?}7, let [n]2 denote

the set {11, 19,21,29,...,n1,n2}, which contains two copies of each positive integer between 1 and
n; we may say that these are the integers {1,2,...,n} with two different colors. By convention [0]s
is the empty set.

Definition 4.1. For alln, j,v € Ny, a Jacobi-Stirling set partition of [n]s into v zero blocks and j
nonzero blocks is an ordinary set partition of [n]a into j+~ blocks for which the following conditions
hold:

(1) v of our blocks, called the zero blocks, are distinguishable, but all other blocks are indistin-
guishable.

(2) The zero blocks may be empty, but all other blocks are nonempty.

(3) The union of the zero blocks may not contain both copies of any number.

(4) Each nonzero block contains both copies of the smallest number it contains, but does not
contain both copies of any other number.

Example 4.1. As we see in the table below, there are 20 Jacobi-Stirling set partitions of [3]; into
~v = 3 zero blocks and j = 2 nonzero blocks.

Zero Boxes | Nonzero Boxes Zero Boxes | Nonzero Boxes

2,0,0 {11,12,31},{21, 22,32} | {31}, 9,9 | {11,12,32}, {21, 25}
I, 0, {11,12,31},{21,22,32} @,@,{32} {11,12,31},{21,22}
9,2,{31} | {11,12},{21,22,32} I,{32},@ | {11,12,31},{21,22}
®7{31}’® {11,12}7{21722732} {32}7®>® {11,12331}a{21722}
{31},@,@ {11,12},{21,22,32} {21},@,@ {11,12,22},{31,32}
9,2,{32} | {11,12},{21,22,31} 7,{21},2 | {11,12,22},{31, 32}
@,{32},@ {11,12},{21,22,31} @,@,{21} {11,12,22},{31,32}
{32},@,@ {11,12},{21,22,31} {22},®,® {11,12,21},{31,32}
®7®7{31} {11a12a32}a{21722} ®7{22}¢® {11,12321}a{31>32}
@,{31},@ {11,12,32},{21,22} @,@,{22} {11,12,21},{31,32}

TABLE 3. Jacobi-Stirling set partitions

As we show next, Jacobi-Stirling numbers count Jacobi-Stirling set partitions.

Theorem 4.1. For alln, j,v € Ny, the Jacobi-Stirling number {?}7 is the number of Jacobi-Stirling

set partitions of [n]a into v zero blocks and j nonzero blocks.
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Proof. For all n,j,v € Ny, let P(n, j,v) denote the number of Jacobi-Stirling set partitions of [n]o
into v zero blocks and j nonzero blocks. Since the Jacobi-Stirling numbers are determined by the
initial conditions and recurrence relation in Theorem [3.1|(iii), it is sufficient to show that P(n, j,7)
satisfies the same initial conditions and recurrence relation.

Since the union of the zero blocks of a Jacobi-Stirling set partition cannot contain both 1; and
19, we see that P(n,0,v) = 0if n > 0. On the other hand, for each  there is one Jacobi-Stirling set
partition of the empty set, so P(0,0,7) = 1. Finally, since the nonzero blocks of a Jacobi-Stirling
set partition must be nonempty, we see that P(0,7,v) = 0 if j > 0. Therefore P(n,j,7) satisfies
the same initial conditions as {?} .

To see that P(n, j,) satisfies the same recurrence relation, we note that for n > 1, Jacobi-Stirling
set partitions of [n]s into v zero blocks and j nonzero blocks come in two disjoint types:

(i) those in which n; and ng are in the same block;
(ii) those in which n; and ng are in different blocks.

Each Jacobi-Stirling set partition in class (i) can be uniquely constructed from a Jacobi-Stirling
set partition of [n — 1] into v zero blocks and j — 1 nonzero blocks by appending a nonzero block
containing only n; and ny. Therefore there are P(n — 1,j — 1,) partitions in class (i). On the
other hand, each Jacobi-Stirling set partition in class (ii) can be uniquely constructed from a Jacobi-
Stirling set partition of [n — 1]2 into 7 zero blocks and j — 1 nonzero blocks by either inserting n;
into a zero block and inserting ny into a nonzero block, or by inserting n; into a nonzero block and
inserting ny into any block not containing ny. There are vjP(n —1, j,v) partitions of the first type,
and j(y+j—1)P(n —1,j,7) partitions of the second type, so there are j(j +2y—1)P(n—1,7,7)
partitions in class (ii). Therefore P(n,j,7v) = P(n— 1,5 — 1,7) 4+ j(j + 2y — 1)P(n — 1,4,7), so
P(n, j,~) satisfies the same recurrence relation as {?}7, and the result follows. [l

Example 4.2. In [2, Example 4.4], the authors showed that {71‘}1 = 2"~! This argument gener-
alizes to show that {711}7 = (2y)"! for all n € N.

Example 4.3. In this example we give a direct combinatorial proof that {”7—11}7 =2(3) +2v(5),
where (;L) denotes the usual binomial coefficient. By Theorem [4.1} the quantity {nﬁl}7 is the

number of Jacobi-Stirling partitions of [n]s into v zero blocks and n — 1 nonzero blocks. In such a
partition there must be exactly one number k which is not the minimum in its block, and at least
one copy of k is in a nonzero block. If both copies of k£ are in nonzero blocks, then we may construct
our partition uniquely by choosing the elements i < j < k of these blocks, and then placing k1 and
ko in blocks with minima ¢ and j. Thus there are 2(’;) of these partitions. Alternatively, if one
copy of k is in a zero block, then we may construct our partition uniquely by choosing the elements
1 < k of the nonzero block containing k, constructing that block with one copy of k, and placing
the other copy of k in one of the v zero blocks. Therefore there are 2+ (g) of these partitions.

Combining these two counts, we find that {77;711}7 =2(3) +27(3), as claimed.

In a development independent of this work, Mongelli has recently given another combinatorial
interpretation of the Jacobi-Stirling numbers [18]. In fact, Mongelli gives a combinatorial interpre-
tation of a general family of numbers, which includes the Jacobi-Stirling numbers as a special case.
Translated into our setting, Mongelli shows inductively that if z = 2y — 1 is a positive integer then
{?}7 is the number of set partitions of [n]e into z zero blocks and j nonzero blocks for which the

following conditions hold.

(1) The zero blocks are distinguishable, but the nonzero blocks are indistinguishable.
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(2) The zero blocks may be empty, but the nonzero blocks are nonempty.
(3) No zero block may contain the first copy of any number.
(4) Each nonzero block contains both copies of the smallest number it contains.

For convenience, we call one of Mongelli’s set partitions a long Jacobi-Stirling set partition.

For any n, j,v € Ny, we can give a bijection between the associated Jacobi-Stirling set partitions
and the associated long Jacobi-Stirling set partitions. To do this, suppose a given long Jacobi-
Stirling set partition has zero blocks Zy, Z1, ..., Z2,_2 and nonzero blocks By, ..., B;. To obtain a
Jacobi-Stirling set partition, for each i, 1 < i < n, we do the following.

e If 41 and 45 are in different nonzero blocks, then we leave i1 and i where they are.

e If 41 and i, are in the same nonzero block and they are the smallest element of that block,
then we leave i; and io where they are.

e If i; and 9 are in the same nonzero block By and they are not the smallest element of that
block, then we put ¢; in Zy and we leave i5 where it is.

o If i € Z for 0 < k < —1 then we leave i1 and io where they are.

o Ifioc Z, 141 for 1 <k <~vy—1andi € B, then we put ip in By, and we put i1 in Zj.

Now Z,,Z+1,...,Z2y 2 are empty, so we remove them from our set partition. The result is

a Jacobi-Stirling set partition, and we can reverse the process step-by-step to recover the original
long Jacobi-Stirling set partition.

5. THE JACOBI-STIRLING NUMBERS OF THE FIRST AND SECOND KINDS

We saw by comparing Theorem with Table [3| that the Jacobi-Stirling numbers are natural
analogues of the Stirling numbers of the second kind (see also [12] and [18]). In the case of the
Stirling numbers we can invert the horizontal generating function given in Table [3| to obtain the
Stirling numbers of the first kind. In particular, these (unsigned) Stirling numbers of the first kind

[’;] may be defined by the identity

n

(5.1 @ =3 wen),

J=0

where (), is the falling factorial given in Table

Similarly, if we invert the horizontal generating function for the Jacobi-Stirling numbers, given
in (iv) of Theorem we obtain a collection of numbers we will call the (unsigned) Jacobi-Stirling
numbers of the first kind, and which we will denote by [?],y Specifically,

(5.2) @m=2ewﬂﬂﬁ
Y

J=0

where (:c>§7) is the generalized falling factorial defined in (3.2)). We immediately obtain the following
biorthogonality relationships:

m;gn(—l)”*j [?L{i&}v = 0pm and m;gn(—nﬁm{?h mv = O (n,m € Np).

The table below lists the Jacobi-Stirling numbers of the first kind for small n and j; see also Table

Bl in [12].
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n/j [0]j=1 j =2 j=3 j=4
n=0[1][0 0 0 0
n=1[0]1 0 0 0
n=2|0]2y 1 0 0
n=30]8y+4y 6 + 2 1 0
n=4]0]|48y3 + 72v% + 24y 44~% + 52y + 12 12y +8 1
n=>50|384y" + 115293 + 105672 + 288~ | 4007> + 101672 + 744y + 144 | 140~? + 260~ + 108 | 207 + 20

Like the Stirling numbers of the second kind, the unsigned Stirling numbers of the first kind

TABLE 4. The Jacobi-Stirling numbers of the first kind

satisfy a triangular recurrence relation (see [0, p. 214]): for all n,j € N we have

relation.

-0

As we show next, the Jacobi-Stirling numbers of the first kind satisfy a similar triangular recurrence

Theorem 5.1. For alln,j € Ny we have

(5.3)

and for all n,j € N we have

(5.4)

i,

|

n

0

[n—l

:| = 571,0
5

j—1

Jro[})

and |:O:| :(5j70,
J Y

L—F(n—l)(n—i—2v—2)[n;1]7.

Proof. Line (5.3)) is immediate from (5.2)), since <x>(()7) =1 and for all j € N the polynomial <x>§7)
is divisible by .

. . y . . . _ + n
To obtain ([5.4), first note that the coefficient of 27 on the right side of ([5.2)) is (—1)7*" [j]w' Now

observe that if n € N then

(:1;>£17) =(x—(n—1)(n+2y— 2))@)(1)

=(z—=(n-1)(n+2y-2)

n—1
1

n

[en]

j=

so the coefficient of 27 on the left side of (5.2) is

n—1

(1)j+n(n1)(n+272)|: ; L+(1)j+n[

n—1
j—1

|

T
J Y

We obtain (5.4) when we equate these two expressions for the coefficient of 7.

Next in this section, we prove a reciprocity result which connects Jacobi-Stirling numbers of the
two kinds. To state this result, first observe that there is a unique collection mv (n,j € Z) of

polynomials in « satisfying the initial condition

(5.5)

|

n
0

:| = 6n,07
oy

0
[:| - 6‘]"0’
J1y

O




JACOBI-STIRLING NUMBERS 13

and recurrence relation

(5.6) [?L: [?:ﬂij(n—l)(n+2’y—2)[n;1]7, (n,k € Z0).

Moreover, these polynomials are the Jacobi-Stirling numbers of the first kind when n,5 € N.
Similarly, there is a unique collection {?}v (n,j € Z) of polynomials in 7 satisfying the initial

condition

n 0
(5.7) { } = 0n,0, {} = 0,0,
0 vy J ol

and recurrence relation

-1 -1
(5.8) {"} - {77 } GG+ 2y — 1){” , } , (n,k € Z).
ity W—=1J), i),
Moreover, these polynomials are the Jacobi-Stirling numbers of the second kind when n,j € N.
It is not difficult to show that if n # 0 and j # 0 differ in sign then [?]7 = {?}7 = 0, but we

might hope that for various negative n and j we obtain interesting new polynomials [?]V and {?}7
Our reciprocity result, which is an analogue of a similar result [I5, Line (2.4)] for classical Stirling
numbers, shows that we actually recover the Jacobi-Stirling numbers of the second and first kinds.

Theorem 5.2. For alln,j € Z we have

(5.9) {:i}7 = (1)t m .

Proof. The Jacobi-Stirling numbers of the second kind are uniquely determined by (5.7) and (5.8,
so it is sufficient to show that the quantities L(n,j) = (—1)"*/ [:fl ] - also satisfy ([5.7) and (5.8]).

The fact that L(n,j) satisfies (5.7)) is immediate from (5.5]), so suppose n # 0 and j # 0. Then

we have

R A A
1=y

e I B G S T RS R (R R
]y —-n+1 1—y
= L(n7j) - ](] + 27 - I)L(n - lvj)’
and the result follows. g
Concluding this section, we now turn our attention to the unimodality of the Jacobi-Stirling
numbers of the first and second kinds. Recall that a sequence of real numbers {z,}>2 is unimodal

whenever there exists j such that 1 <y <--- < zjand z; > 11 > ---.
As in [3| Section 5.7], we consider the horizontal generating function

(5.10) INOESY {7};& (n € No)
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which, by Theorem (iii), is a polynomial of degree n with leading coefficient {Z}ﬂ/ = 1. Again,
by this property, we find that Ag(xz) =1 and, for n > 1,

" (n—1 j " o _ n—1 i
An(m)—;{j_l}vw +;J(J+2v 1){ i }7
= w(Ap-1(2) + 2745, 1 (z) + 2454 (2)).

For example, we see that
Ai(z) = x, Ao(x) = 2z + 2y), As(z) = 2(a® + 23y + D)z + 497).

Since v > 0, A1, As, and A3 are real polynomials, the zeros of which are all real, simple, and
non-positive. Along the same lines as the proof of Theorem 5.7 in [3], we obtain

Theorem 5.3. Let n € N. The zeros of Ay, defined in (5.10), are real, simple and non-positive.
Moreover, A,(0) = 0.

For a different proof, see [I7, Theorem 4]. From Theorem equation (5.2)), and a standard
criterion for unimodality as given in Comtet [6, p. 270], we can state the following result.

Theorem 5.4. The unsigned Jacobi-Stirling numbers of the first kind and the Jacobi-Stirling num-
bers of the second kind are unimodal with either a peak or a plateau of 2 points.

6. TwO COMBINATORIAL INTERPRETATIONS OF THE JACOBI-STIRLING NUMBERS OF THE
FirsT KIND

The unsigned classical Stirling number of the first kind [?] is the number of permutations of
{1,2,...,n} with j cycles. With this in mind, it is natural to ask for a similar combinatorial
interpretation of the Jacobi-Stirling number of the first kind [?]7 Indeed, Egge [8] has given a

combinatorial interpretation of the Legendre-Stirling number [?] ) in terms of pairs of permutations;

one might call these Legendre-Stirling permutation pairs. More recently, Gelineau and Zeng [12]
have found a statistic on Legendre-Stirling permutation pairs which allows them to interpret [?] ., as

a generating function over these pairs. In this section we generalize Legendre-Stirling permutation
pairs still further, to obtain objects we will call Jacobi-Stirling permutation pairs. These objects will
come in two flavors, balanced and unbalanced. When v = 1 it will be clear that both the balanced
and the unbalanced Jacobi-Stirling permutation pairs are in fact Legendre-Stirling permutation
pairs. In addition, we will show that for any positive integer ~, the Jacobi-Stirling numbers count
both the balanced and the unbalanced Jacobi-Stirling permutation pairs. In connection with these
pairs, it will be useful to note that the cycle mazima of a given permutation are the numbers which
are largest in their cycles. For example, if 7 = (4,6,1)(9,2,3)(7, 8) is a permutation in Syo, written
in cycle notation, then its cycle maxima are 5,6, 8,9, and 10.

Definition 6.1. Suppose n,vy € Ny. A balanced Jacobi-Stirling permutation pair of length n is an
ordered pair (71, m2) with ™1 € Spyy and 7 € Spiy—1 for which the following conditions hold:

(1) m1 has one more cycle than .

(2) The cycle mazima of w1 which are less than n + v are exactly the cycle mazima of ma.

(3) For each k which is not a cycle mazimum, at least one of w1 (k) and ma(k) is less than or
equal to n.
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In [8] Egge defines a Legendre-Stirling permutation pair of length n to be an ordered pair (7, m2)
with m; € Sp41 and my € Sy, such that m; has one more cycle than me and the cycle maxima of
m1 which are less than n + 1 are exactly the cycle maxima of my. If (71, 72) is an ordered pair of
permutations with m € Sp41 and w2 € S, which satisfies conditions (1) and (2) of Definition
then the fact that mo € S,, implies (7, m2) also satisfies condition (3). Therefore, the Legendre-
Stirling permutation pairs of length n are exactly the balanced Jacobi-Stirling permutation pairs of
length n with v = 1. The Legendre-Stirling permutation pairs are counted by the Legendre-Stirling
numbers of the first kind [7;] > aswe show next, the balanced Jacobi-Stirling permutation pairs are
counted by the Jacobi-Stirling numbers of the first kind.

Theorem 6.1. For all n,j,v € Ny, the number of balanced Jacobi-Stirling permutation pairs
(m1,m2) of length n in which w1 has exactly v + j cycles is [?]7

Proof. Let a, ; denote the number of balanced Jacobi-Stirling permutation pairs (71, m2) of length
n in which 71 has exactly v + j cycles.
It follows from (5.5) and (5.6) that B]'y = 0j1. On the other hand, if (7, m2) is a balanced

Jacobi-Stirling permutation pair of length 1 in which m; has exactly v + j cycles, then we must
have j <1, since m € S14+. If j = 0 then some entry of m; violates Definition 3), so we must
have j = 1. Moreover, when j = 1 both 7 and m must be the identity permutation, so a; ; = 6;1.
Therefore the result holds for n = 1.

Now suppose n > 1 and the result holds for n — 1; we argue by induction on n. To obtain
an,j, first observe that by condition (2) of Definition if (m1,m2) is a balanced Jacobi-Stirling
permutation pair of length n then 1 is a fixed point in m; if and only if it is a fixed point in ms.
Pairs (71, m2) in which 1 is a fixed point are in bijection with pairs (o1, 02) of length n — 1 in which
o1 has j — 1 4+ v cycles by removing the 1 from each permutation and decreasing all other entries
by 1. Each pair (71, m2) in which 1 is not a fixed point may be constructed uniquely by choosing a
pair (o1, 02) of length n — 1 in which o3 has j 4 cycles, increasing each entry of each permutation
by 1, and inserting 1 after an entry of each permutation. There are a,_1; pairs (o1, 02), there are
(n—1)(n+~y—2) ways to insert 1 so that 71 (1) < n, and there are y(n —1) ways to insert 1 so that
m1(1) > n. Combining these observations and using induction to eliminate a,_1 j—1 and a,_; ; we

find
ws= [ 23] pomvor o 5] <[]

as desired. ]

We have shown that the Jacobi-Stirling numbers of the first kind count balanced Jacobi-Stirling
permutation pairs whenever -y is an integer, but the orthogonal polynomials that give rise to these
numbers include interesting special cases in which + is a half integer. Most notably, the Chebyshev
polynomials of the first kind occur when v = %, while the Chebyshev polynomials of the second kind
occur when v = % To address the combinatorics of the case in which 2+ is an integer, we introduce
unbalanced Jacobi-Stirling permutation pairs, and we show that these pairs are also counted by

the Jacobi-Stirling numbers of the first kind.
Definition 6.2. Suppose n, 2y € Ny. An unbalanced Jacobi-Stirling permutation pair of length n
is an ordered pair (7, 72) with ™1 € Spi2y—1 and o € Sy, for which the following hold.

(1) m has 2y — 1 more cycles than ms.
(2) The cycle mazima of w1 which are less than n+ 1 are exactly the cycle mazima of ma.
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It is not difficult to see that when v = 1 the unbalanced Jacobi-Stirling permutation pairs are
exactly the Legendre-Stirling permutation pairs introduced by Egge, which are counted by the
Legendre-Stirling numbers of the first kind [?] x As we show next, the unbalanced Jacobi-Stirling
permutation pairs are counted by the Jacobi-Stirling numbers of the first kind. We note that this
result is a special case of a result proved independently by Mongelli [1§].

Theorem 6.2. For all n,j,v € Ng, the number of unbalanced Jacobi-Stirling permutation pairs
(m1,m2) of length n in which mo has exactly j cycles is [?]7

Proof. Let a, ; denote the number of unbalanced Jacobi-Stirling permutation pairs (71, w2) of length
n in which 7y has exactly j cycles.
It follows from ([5.5) and (5.6]) that [ﬂv = §;1. On the other hand, if (7, m2) is an unbalanced

Jacobi-Stirling permutation pair of length 1 in which m has exactly j cycles, then we must have
j =1, since my € S7. Moreover, when 7 = 1 both 7 and 7 must be the identity permutation, so
a1,; = 0;1. Therefore the result holds for n = 1.

Now suppose n > 1 and the result holds for n — 1; we argue by induction on n. To obtain
an,j, first observe that by condition 2 of Definition if (mq,m2) is an unbalanced Jacobi-Stirling
permutation pair of length n then 1 is a fixed point in 7 if and only if it is a fixed point in 5.
Pairs (71, m2) in which 1 is a fixed point are in bijection with pairs (o1, 02) of length n — 1 in which
o9 has j — 1 cycles by removing the 1 from each permutation and decreasing all other entries by 1.
Each pair (71, 72) in which 1 is not a fixed point may be constructed uniquely by choosing a pair
(01,02) of length n — 1 in which oy has j cycles, increasing each entry of each permutation by 1,
and inserting 1 after an entry of each permutation. There are a,_1 ; pairs (01,02), and there are
(n —1)(n + 2v — 2) ways to insert our 1’s. Combining these observations and using induction to
eliminate a,—1 -1 and a,_; we find

-1 —1

anj = [n } +(n—1)(n+2y—2) [n ) ] = [n] ,
I J 1y g

as desired. OJ

We conclude with an example involving unbalanced Jacobi-Stirling permutation pairs.

Example 6.1. In this example we give a direct combinatorial proof that

E‘L = (n—1)! j]j:m +4)-

By Theorem the quantity [Tll]w is the number of unbalanced Jacobi-Stirling permutation pairs
(m1,m2) of length n, where m € Sy,49,—1 has 2y cycles and m € S, has 1 cycle. Since mp has 1
cycle, there are (n — 1)! choices for this permutation. Moreover, the cycle maxima for 71 must be
n,n+1,....,n+ 2y — 1. Now we may place 1 in m in 27 ways, we may place 2 in 2y + 1 ways,
and in general we may place j 4+ 1 in 2y + j ways. Thus there are (n — 1)! H;:&(Q’y + j) of these
unbalanced Jacobi-Stirling permutation pairs.
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