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Long, Reid, and Thistlethwaite have shown that some groups generated by
representations of the 1334 triangle group in SL3(Z) are thin, while the status of
others is unknown. We take a new approach: For each group we introduce a new
graph that captures information about representations of 1334 in the group. We
provide examples of our graph for a variety of groups, and we use information
about the graph for SL3(Z/2Z) to show that the chromatic number of the graph
for SL3(Z) is at most 8. By generating a portion of the graph for SL3(Z) we show
its chromatic number is at least 4; we conjecture it is equal to 4.

1. Introduction

Consider a subgroup G of SLn(Z), the group of all n×n matrices with integer entries
and a determinant of 1, under matrix multiplication. Later we will also consider
subgroups of SLn(Z/pZ), the groups of all n × n matrices with determinant 1 and
entries in Z/pZ, under matrix multiplication.

We say G is a thin group whenever G has infinite index in SLn(Z) and the Zariski
closure of G is all of SLn(Z). To define the Zariski closure of G, suppose

A =


x11 x12 · · · x1n

x21 x22 · · · x2n
...

...
. . .

...
xn1 xn2 · · · xnn


is in G and let p be a polynomial in the n2 variables x11, x12, . . . , x1n, . . . , xn1, xn2,
and xnn . We define p(A) to be p evaluated at the entries of A. Let I (G) be the set
of all polynomials p such that p(A) = 0 for all A ∈ G. The Zariski closure of G
is the set of all matrices B ∈ SLn(Z) such that for each polynomial p ∈ I (G) we
have p(B) = 0. By construction, G is a subset of its Zariski closure.
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While groups that have both infinite index and are Zariski dense have been
studied for the past 150 years, and they have been called thin for the last 15, there
are still many groups for which we cannot definitively determine whether or not
they are thin [Kontorovich et al. 2019]. We explore this in three (non-)examples.

Consider the subgroup G of SL2(Z) generated by

A =

(
1 1
0 1

)
and B =

(
0 1

−1 0

)
.

As Kontorovich, Long, Lubotzky, and Reid [Kontorovich et al. 2019] note, it is
well known that this group is all of SL2(Z), and thus has index 1 and is not thin.

Next consider the subgroup G of SL3(Z) generated by

A =

0 0 1
1 0 0
0 1 0

 and B =

1 2 3
0 −2 −1
0 3 1

 .

We can check that G is a representation of the 1334 triangle group, which is defined
by

T = ⟨a, b | a3
= b3

= (ab)4
= e⟩. (1)

In fact, this representation is faithful; one can use work of [Margulis 1991] to show
that this implies G has infinite index in SL3(Z). It turns out that the Zariski closure
of G is SL3(Z), so G is thin.

By contrast, it is not always known whether a given subgroup of SL3(Z) is thin.
For example, consider the group G generated by

A =

1 1 2
0 1 1
0 −3 −2

 and B =

−2 0 −1
−5 1 −1

3 0 1

 .

We can mod out by a prime number to show that this group is Zariski dense, as
described in [Kontorovich et al. 2019], but it is not known whether the group has
infinite index in SL3(Z).

Many of the thin group candidates studied in [Long et al. 2011], as well as the
examples above, are representations of the 1334 triangle group T defined in (1). In
fact, we have used ideas from [Long et al. 2011] to generate thousands of additional
thin group candidates, all of which are also representations of T. In this paper we
introduce and study a natural graph on the set of elements of order 3 in a group G
that captures interesting information about the set of representations of 1334 in G.

For any group G, let 1334(G) be the graph whose vertices are the elements
a ∈ G such that a3

= e, in which there is an edge between two vertices a and b if
and only if (ab)4

= e. We note that since (ab)4
= e defines a symmetric relation,

1334(G) is an undirected graph. We call 1334(G) the 334-triangle graph of G.
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In this paper we explore the properties of 1334(G) generally before considering a
number of finite examples. We then turn our attention to 1334(SL3(Z)).

Although we do not know of an explicit connection between 1334(SL3(Z)) and
thin groups in SL3(Z), this graph seems to be of independent interest. Among the
properties of 1334(SL3(Z)) we could study, we focus on the chromatic number.
We use the natural homomorphism from SL3(Z) to SL3(Z/2Z) to show that this
chromatic number is at most 8, and we examine a small portion of the graph to
show it is at least 4. We conjecture it is equal to 4.

2. The 334-triangle graph

In this section, we analyze the 334-triangle graph for a variety of groups. To start,
we prove four facts about 1334(G): the identity element is adjacent to itself and
nothing else, the identity element is the only element that is adjacent to itself, every
element is adjacent to its inverse, and for abelian groups these are the only edges.
We also describe 1334(G) when G is a direct product of two groups.

Lemma 2.1. For any group G, the identity in G is adjacent in 1334(G) to itself
and is adjacent to no other vertex in 1334(G). Furthermore, the identity is the only
element in 1334(G) that is adjacent to itself.

Proof. Let G be a group and let e be the identity element of G. Then e3
= e and

(ee)4
= e, so e is a vertex in 1334(G) and is adjacent to itself.

Let A be an order-3 element of G, so that A3
= e, but A ̸= e. Then, (Ae)4

= A,
so there is no edge connecting A to e. Hence, e is not adjacent to any other element
in the 1334 graph of G.

Finally, suppose A is adjacent to itself. Since A is a vertex in 1334(G), we have
A3

= e and therefore A9
= e. Since A is adjacent to itself, we also have (A2)4

= e,
so A8

= e. Since A9
= A8, we must have A = e. □

In view of Lemma 2.1, we will almost always disregard the identity vertex in
further discussions of 1334(G) and focus only on the nonidentity component(s).

Lemma 2.2. For any group G, and any vertex A in 1334(G), the element A−1 is
also a vertex in 1334(G), and A and A−1 are adjacent.

Proof. Let G be a group and let A ∈ G be an element of G such that A3
= e. If

A = e, then A = A−1, and by Lemma 2.1, A is adjacent to itself. Therefore, A and
A−1 are both vertices in 1334(G) and are adjacent.

Now suppose A ̸=e. Since |A|= |A−1
| and A3

=e, we also know that (A−1)3
=e.

Therefore, A−1 is a vertex in 1334(G). In addition, (AA−1)4
= e4

= e, so A and
A−1 are adjacent. □

Using Lemmas 2.1 and 2.2, we are able to describe 1334(G) completely when
G is abelian.
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Lemma 2.3. For any abelian group G, two vertices A, B in 1334(G) are adjacent
if and only if A−1

= B.

Proof. Let G be an abelian group and let A and B be two elements of G such
that A3

= B3
= e. We know A and B will be adjacent if and only if (AB)4

= e.
However, (AB)4

= A4 B4
= AB. Thus, A and B will be adjacent if and only if

AB = e, and this is only true when A−1
= B. □

We know that in some cases the converse of Lemma 2.3 can fail. That is, there
are some nonabelian groups that also have the property that two vertices A, B are
adjacent if and only if A−1

= B. For example, this will happen if G is not abelian
and has odd order divisible by 3. It is not known whether the converse holds for
groups whose order is divisible by 6 and that are generated by their order-2 and
order-3 elements.

In the case where H ⊆ G, it turns out that 1334(H) is a subgraph of 1334(G).
That is, 1334(H) is a subset of the vertices in 1334(G) along with all edges
connecting them. Another interesting question is for H ◁ G: how are 1334(G),
1334(H) and 1334(G/H) related? This is a question for further research.

Finally, we also consider the 334-triangle graph of a direct sum of groups,
showing that the graph 1334(G ⊕ H) is the Kronecker product of 1334(G) and
1334(H).

Definition 2.4. For any graphs G and H with vertices g, g′
∈ G and h, h′

∈ H , the
Kronecker product of G and H , written G ⊗ H , is the graph with vertices of the
form (g, h) and in which (g, h) and (g′, h′) are adjacent if and only if both g and
g′ are adjacent in G and h and h′ are adjacent in H .

Lemma 2.5. For any groups G and H , we have

1334(G ⊕ H) = 1334(G) ⊗ 1334(H).

Proof. Let G be a group with elements g and g′ such that g3
= g′3

= eG and let
H be a group with elements h and h′ such that h3

= h′3
= eH , where eG and eH

are the identity elements of G and H , respectively. Consider elements (g, h) and
(g′, h′) in G ⊕ H . We wish to show that (g, h) and (g′, h′) will be adjacent in
1334(G ⊕ H) if and only if g and g′ are adjacent in 1334(G) and h and h′ are
adjacent in the 1334(H).

In order for an element (g, h) in G ⊕ H to have order 3, both g and h must have
either order 3 or 1. Thus, g and h will both appear in 1334(G) and 1334(H),
respectively. If g and g′ are adjacent in 1334(G) and h and h′ are adjacent in
1334(H), then ((g, h)(g′, h′))4

= ((gg′)4, (hh′4))= (eG, eH ), so (g, h) and (g′, h′)

are adjacent in 1334(G ⊕ H).
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(243)

(134)

(142)

(123)

(234)
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(124)

(132)

Figure 1. The nonidentity component of 1334(A4).

On the other hand, let (g, h) and (g′, h′) be adjacent in 1334(G ⊗ H). Then,
((g, h)(g′, h′))4

= ((gg′)4, (hh′4)) = (eG, eH ), so (gg′)4
= eG and (hh′)4

= eH , so
g and g′ are adjacent in 1334(G) and h and h′ are adjacent in 1334(H). □

Having now laid the groundwork for understanding these graphs, and having
completely described the graph for all abelian groups and groups that are isomorphic
to direct sums of two or more groups, let us consider 1334(G) of some groups that
are neither of these. We begin by analyzing S4, the set of permutations on four letters.
S4 has eight order-3 elements: (123), (132), (124), (142), (134), (143), (234), and
(243). Thus, the nonidentity component of the graph will have eight vertices. We are
interested in the subgroup these elements generate, since any element of the group
that is not part of our subgroup will not appear in the graph. For S4, the relevant
subgroup is A4. Therefore, the graphs for S4 and A4 are the same, so we will focus
our discussion on A4. (Indeed, the same reasoning shows 1334(Sn) = 1334(An)

for all n ≥ 2.)
We can check that the order-3 elements of A4 fall into two conjugacy classes,

each with four elements. As we will show, each order-3 element is adjacent to
exactly those order-3 elements to which it is not conjugate. To see this, note that
for two order-3 elements in S4 there are two possibilities for their product:

(abc)(abd) = (ac)(bd), (2)

(abc)(bad) = (adc). (3)

Since these are the only two options, and (adc)4
̸= e, there will be an edge con-

necting elements A and B if and only if A is of the form (abc) and B is of the
form (abd). We can check that this occurs exactly when A and B are not conjugate
in A4.

Based on the analysis above, we find that the graph 1334(A4) is as in Figure 1.
This is a complete bipartite graph, with the conjugacy classes forming the bipartition.
This graph has chromatic number 2 and has cycles of length 4, 6, and 8; its clique
number is 2.
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Figure 2. The nonidentity component of 1334(S5).

We leave it to the reader to verify the interesting fact that SL2(Z/3Z) and S4,
which have the same order, also have isomorphic 334-triangle graphs.

As another example, we observe that the 334-triangle graph of S5 (and therefore
of A5) is not bipartite — (125), (124), and (123) form a three-cycle — and every
vertex has degree 7. This graph is shown in Figure 2.

We are most interested in 1334(SL3(Z)), since we have generated many can-
didates for thin groups that are subgroups of SL3(Z), as mentioned in Section 1.
However, this graph is infinite, so we will begin with finite graphs that are images of
this graph after modding out by a prime. First we analyze the nonidentity component
of 1334(SL3(Z/2Z)), which is shown in Figure 3. We used Mathematica to
generate all of the order-3 elements of SL3(Z/2Z). There are 56 such elements;
thus, the nonidentity component of 1334(SL3(Z/2Z)) contains 56 vertices. Every
vertex has degree 19 and there are cycles of all lengths from 3 to 56. In particular,
this component is connected and Hamiltonian. It also has chromatic number 8 and
cliques up to size 5. One such clique is

0 1 0
1 0 1
1 1 0

 ,

1 0 1
0 1 1
0 1 0

 ,

1 1 1
1 0 0
0 0 1

 ,

1 0 0
1 1 1
1 1 0

 ,

1 0 0
1 0 1
0 1 1

 .

We are able to say less about 1334(SL3(Z/3Z)) because the graph becomes
so much larger. We know there are 728 matrices of order 3 in SL3(Z/3Z), so the
nonidentity component of 1334(SL3(Z/3Z)) will contain 728 vertices. We know
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Figure 3. The nonidentity component of 1334(SL3(Z/2Z)).

there is a single connected nonidentity component. All vertices have degree either
118 or 136. We were unable to determine the length of cycles or chromatic number
of this graph due to its size.

3. 1334(SL3(Z))

We now consider 1334(SL3(Z)). We know SL3(Z) is infinite, and we can show it
has an infinite number of order-3 elements. For example, for any a, b, c ∈ Z,1 3a 3b

0 −2−3c −1−3c−3c2

0 3 1+3c


has integer entries, determinant 1, and order 3. Thus, 1334(SL3(Z)) is also infinite.
However, using what we know about 1334(SL3(Z/2Z)) we are able to put bounds
on the chromatic number of 1334(SL3(Z)). We will do this by showing that any
edge in 1334(SL3(Z)) reduces to an edge in 1334(SL3(Z/2Z)). We will then lift a
proper coloring from 1334(SL3(Z/2Z)) to 1334(SL3(Z)) by coloring each vertex
in 1334(SL3(Z)) the same color as its image in 1334(SL3(Z/2Z)).

Before we begin, note that we are using the fact that the natural homomorphism
from SL3(Z) to SL3(Z/2Z) induces a graph homomorphism from 1334(SL3(Z))
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to 1334(SL3(Z/2Z)). It’s worth noting that in general any homomorphism from a
group G to a group H will similarly induce a graph homomorphism from 1334(G)

to 1334(H), underscoring the fact that the 334-triangle graph is natural from an
algebraic point of view.

We first show that no vertex in 1334(SL3(Z)) reduces to the identity modulo
any prime.

Lemma 3.1. For any matrix A ∈ SL3(Z) with order 3, A cannot be equivalent to
the identity matrix modulo any prime.

Proof. Let A be a matrix in SL3(Z) with A3
= I3, where I3 is the identity element

of SL3(Z), and assume A ̸= I3. Let p be prime, and assume by way of contradiction
that A is equivalent to the identity modulo p.

Since A3
= I3, the minimal polynomial for A over Q must divide x3

− 1 =

(x −1)(x2
+x +1). Since A ̸= I3, the minimal polynomial cannot be x −1. We also

note that x2
+x +1 = (x −ω)(x −ω), where ω =−

1
2 +

1
2

√
3i is a primitive third root

of unity. Since ω and ω are not rational, the minimal polynomial must be x2
+ x +1

or x3
− 1. But if the minimal polynomial were x2

+ x + 1 then by the Cayley–
Hamilton theorem the characteristic polynomial would be −(x − ω)(x2

+ x + 1)

or −(x − ω)(x2
+ x + 1), neither of which has constant term equal to det A = 1.

Therefore, the minimal polynomial for A over Q is x3
− 1.

The fact that the minimal polynomial for A over Q is x3
−1 implies A has an eigen-

vector v⃗1 with eigenvalue 1, and that there is a vector v⃗2 ̸= 0⃗ with (A2
+A+ I3)v⃗2 = 0⃗.

We set v⃗3 = Av⃗2. By scaling if necessary, we can assume all of the entries of v⃗1, v⃗2,
and v⃗3 are integers and that the entries of v⃗2 have no common prime factor. We can
check that Av⃗3 = −v⃗2 − v⃗3 and that v⃗1, v⃗2, and v⃗3 form a basis for Q3. Therefore,
there is an invertible 3 × 3 matrix M with entries in Z such that

AM = M

1 0 0
0 0 −1
0 1 −1

 .

In particular, the columns of M are v⃗1, v⃗2, and v⃗3. We can now use our assumption
that A is equivalent to the identity modulo p to check that the entries of the middle
column of M are all divisible by p. But this contradicts the fact that the entries of
v⃗2 do not have a common prime factor. □

Having shown that no matrices in the nonidentity component of 1334(SL3(Z)) re-
duce to the identity modulo a prime p, we can show that every edge in 1334(SL3(Z))

maps to an edge in 1334(SL3(Z/pZ)).

Lemma 3.2. Let A and B with A ̸= B be adjacent vertices in 1334(SL3(Z)). Then,
for A′

= A mod p and B ′
= B mod p, A′ and B ′ are adjacent in 1334(SL3(Z/pZ))

and A′
̸= B ′.
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Proof. Let A, B be adjacent vertices in 1334(SL3(Z)) with A ̸= B and let p be
prime. By Lemma 2.1, neither A nor B are the identity, and by Lemma 3.1 neither
reduce to the identity modulo p.

Let C = AB and let C ′
= A′B ′. We know that C ′

= C mod p by the rules of
modular arithmetic. We know that C4

= I3, so C ′4 must also equal the identity.
Thus, A′ and B ′ are adjacent in 1334(SL3(Z/pZ)). By Lemma 2.1, the only loop
in 1334(SL3(Z/pZ)) is at the identity and A ̸= B ̸= I3, so A′

̸= B ′. □

Finally, since each edge in 1334(SL3(Z)) maps to an edge in 1334(SL3(Z/pZ)),
we are able to set an upper bound on the chromatic number, χ(1334(SL3(Z)).

Theorem 3.3. For any prime p, we have

χ(1334(SL3(Z))) ≤ χ(1334(SL3(Z/pZ))).

Proof. If we have a proper coloring of 1334(SL3(Z/pZ)) where p is prime, then
we can lift it to a proper coloring of 1334(SL3(Z)). We do this by coloring
every vertex in 1334(SL3(Z)) the same color as its image in 1334(SL3(Z/pZ)).
For any two adjacent vertices in 1334(SL3(Z)), their images are also adjacent in
1334(SL3(Z/pZ)), so they will have different colors. Thus, we will have a proper
coloring of 1334(SL3(Z)). Therefore, the chromatic number of 1334(SL3(Z)) is
at most the chromatic number of 1334(SL3(Z/pZ)). □

Since χ(1334(SL3(Z/2Z))) = 8, and 2 is prime, by Theorem 3.3 we know that
the chromatic number of 1334(SL3(Z)) is at most 8. We have used Mathematica
to generate a finite portion of this graph with about 25,000 vertices; the chromatic
number of this portion is 4. Thus, one lower bound for the chromatic number of
1334(SL3(Z)) is 4. We conjecture that χ(1334(SL3(Z))) is exactly 4.

Conjecture 3.4. χ(1334(SL3(Z))) = 4.

Using the IGraph/M package, which uses the Boyer–Myrvold algorithm, we
have found that the nonidentity part of 1334(SL3(Z)) that we have generated so
far is nonplanar. Thus, the overall graph is also nonplanar. Additionally, it is
connected, has cycles of varying lengths, and has no cliques of size greater than 3.
We conjecture that all three of these facts hold for the entire graph 1334(SL3(Z)).

Conjecture 3.5. The nonidentity component of 1334(SL3(Z)) is connected.

Conjecture 3.6. There are cycles of every length in 1334(SL3(Z)).

Conjecture 3.7. There are no cliques of size greater than 3 in 1334(SL3(Z)).
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